Suppr超能文献

结合混合效应隐马尔可夫模型与潜在交替复发性事件过程来建立日间活动-休息周期模型。

Combining mixed effects hidden Markov models with latent alternating recurrent event processes to model diurnal active-rest cycles.

机构信息

Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Pennsylvania, PA, USA.

出版信息

Biometrics. 2023 Dec;79(4):3402-3417. doi: 10.1111/biom.13865. Epub 2023 Apr 19.

Abstract

Data collected from wearable devices can shed light on an individual's pattern of behavioral and circadian routine. Phone use can be modeled as alternating processes, between the state of active use and the state of being idle. Markov chains and alternating recurrent event models are commonly used to model state transitions in cases such as these, and the incorporation of random effects can be used to introduce diurnal effects. While state labels can be derived prior to modeling dynamics, this approach omits informative regression covariates that can influence state memberships. We instead propose an alternating recurrent event proportional hazards (PH) regression to model the transitions between latent states. We propose an expectation-maximization algorithm for imputing latent state labels and estimating parameters. We show that our E-step simplifies to the hidden Markov model (HMM) forward-backward algorithm, allowing us to recover an HMM with logistic regression transition probabilities. In addition, we show that PH modeling of discrete-time transitions implicitly penalizes the logistic regression likelihood and results in shrinkage estimators for the relative risk. This new estimator favors an extended stay in a state and is useful for modeling diurnal rhythms. We derive asymptotic distributions for our parameter estimates and compare our approach against competing methods through simulation as well as in a digital phenotyping study that followed smartphone use in a cohort of adolescents with mood disorders.

摘要

可穿戴设备收集的数据可以揭示个体行为和昼夜节律模式。手机的使用可以建模为交替过程,即在活动使用状态和空闲状态之间。马尔可夫链和交替重复事件模型常用于模拟这种情况下的状态转换,并且可以引入随机效应来引入昼夜效应。虽然可以在建模动态之前得出状态标签,但这种方法忽略了可能影响状态成员的信息性回归协变量。我们转而提出了一种交替重复事件比例风险 (PH) 回归来模拟潜在状态之间的转换。我们提出了一种期望最大化算法来推断潜在状态标签并估计参数。我们表明,我们的 E 步简化为隐马尔可夫模型 (HMM) 前向-后向算法,允许我们用逻辑回归转移概率恢复 HMM。此外,我们表明,离散时间转换的 PH 建模隐式惩罚逻辑回归似然,并且为相对风险生成收缩估计量。这个新的估计量有利于在一个状态中停留更长时间,并且对于建模昼夜节律很有用。我们推导出参数估计的渐近分布,并通过模拟以及对患有情绪障碍的青少年队列中智能手机使用情况进行的数字表型研究,将我们的方法与竞争方法进行比较。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验