Suppr超能文献

一种基于离散潜在变量的时空模型,用于分析新冠病毒疾病发病率。

A spatio-temporal model based on discrete latent variables for the analysis of COVID-19 incidence.

作者信息

Bartolucci Francesco, Farcomeni Alessio

机构信息

University of Perugia, Perugia, Italy.

University of Rome "Tor Vergata", via Columbia, 2, 00133 Roma, Italy.

出版信息

Spat Stat. 2022 Jun;49:100504. doi: 10.1016/j.spasta.2021.100504. Epub 2021 Mar 27.

Abstract

We propose a model based on discrete latent variables, which are spatially associated and time specific, for the analysis of incident cases of SARS-CoV-2 infections. We assume that for each area the sequence of latent variables across time follows a Markov chain with initial and transition probabilities that also depend on latent variables in neighboring areas. The model is estimated by a Markov chain Monte Carlo algorithm based on a data augmentation scheme, in which the latent states are drawn together with the model parameters for each area and time. As an illustration we analyze incident cases of SARS-CoV-2 collected in Italy at regional level for the period from February 24, 2020, to January 17, 2021, corresponding to 48 weeks, where we use number of swabs as an offset. Our model identifies a common trend and, for every week, assigns each region to one among five distinct risk groups.

摘要

我们提出了一种基于离散潜在变量的模型,这些潜在变量在空间上相关且具有时间特异性,用于分析严重急性呼吸综合征冠状病毒2(SARS-CoV-2)感染的发病病例。我们假设,对于每个地区,随时间变化的潜在变量序列遵循一个马尔可夫链,其初始概率和转移概率也取决于相邻地区的潜在变量。该模型通过基于数据增强方案的马尔可夫链蒙特卡罗算法进行估计,在该方案中,为每个地区和时间绘制潜在状态以及模型参数。作为示例,我们分析了2020年2月24日至2021年1月17日期间意大利区域层面收集的SARS-CoV-2发病病例,共48周,我们将拭子数量用作偏移量。我们的模型识别出一种共同趋势,并在每周将每个地区分配到五个不同风险组中的一个。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c070/7997863/bc94ebc053ac/gr1_lrg.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验