Nhan Tam, Burgess Alison, Lilge Lothar, Hynynen Kullervo
Physical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada. Medical Biophysics, University of Toronto, Toronto, ON, Canada.
Phys Med Biol. 2014 Oct 21;59(20):5987-6004. doi: 10.1088/0031-9155/59/20/5987. Epub 2014 Sep 17.
Doxorubicin (Dox) is a well-established chemotherapeutic agent, however it has limited efficacy in treating brain malignancies due to the presence of the blood-brain barrier (BBB). Recent preclinical studies have demonstrated that focused ultrasound induced BBB disruption (BBBD) enables efficient delivery of Dox to the brain. For future treatment planning of BBBD-based drug delivery, it is crucial to establish a mathematical framework to predict the effect of transient BBB permeability enhancement on the spatiotemporal distribution of Dox at the targeted area. The constructed model considers Dox concentrations within three compartments (plasma, extracellular, intracellular) that are governed by various transport processes (e.g. diffusion in interstitial space, exchange across vessel wall, clearance by cerebral spinal fluid, uptake by brain cells). By examining several clinical treatment aspects (e.g. sonication scheme, permeability enhancement, injection mode), our simulation results support the experimental findings of optimal interval delay between two consecutive sonications and therapeutically-sufficient intracellular concentration with respect to transfer constant Ktrans range of 0.01-0.03 min(-1). Finally, the model suggests that infusion over a short duration (20-60 min) should be employed along with single-sonication or multiple-sonication at 10 min interval to ensure maximum delivery to the intracellular compartment while attaining minimal cardiotoxicity via suppressing peak plasma concentration.
阿霉素(Dox)是一种成熟的化疗药物,然而由于血脑屏障(BBB)的存在,其在治疗脑恶性肿瘤方面疗效有限。最近的临床前研究表明,聚焦超声诱导的血脑屏障破坏(BBBD)能够使阿霉素有效地输送到大脑。对于基于BBBD的药物递送的未来治疗规划而言,建立一个数学框架来预测瞬时血脑屏障通透性增强对靶向区域阿霉素时空分布的影响至关重要。构建的模型考虑了由各种转运过程(例如间质空间扩散、跨血管壁交换、脑脊液清除、脑细胞摄取)控制的三个隔室(血浆、细胞外、细胞内)中的阿霉素浓度。通过研究几个临床治疗方面(例如超声处理方案、通透性增强、注射模式),我们的模拟结果支持了关于两个连续超声处理之间的最佳间隔延迟以及相对于转移常数Ktrans范围为0.01 - 0.03 min⁻¹的治疗上足够的细胞内浓度的实验结果。最后,该模型表明应采用短时间(20 - 60分钟)输注,并结合间隔10分钟的单次超声处理或多次超声处理,以确保最大程度地递送至细胞内隔室,同时通过抑制血浆峰值浓度实现最小的心脏毒性。