Suppr超能文献

轮状病毒NSP4卷曲螺旋结构域的结构可塑性

Structural plasticity of the coiled-coil domain of rotavirus NSP4.

作者信息

Sastri Narayan P, Viskovska Maria, Hyser Joseph M, Tanner Mark R, Horton Lori B, Sankaran Banumathi, Prasad B V Venkataram, Estes Mary K

机构信息

Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA.

Verna Marrs Mclean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA.

出版信息

J Virol. 2014 Dec;88(23):13602-12. doi: 10.1128/JVI.02227-14. Epub 2014 Sep 17.

Abstract

UNLABELLED

Rotavirus (RV) nonstructural protein 4 (NSP4) is a virulence factor that disrupts cellular Ca(2+) homeostasis and plays multiple roles regulating RV replication and the pathophysiology of RV-induced diarrhea. Although its native oligomeric state is unclear, crystallographic studies of the coiled-coil domain (CCD) of NSP4 from two different strains suggest that it functions as a tetramer or a pentamer. While the CCD of simian strain SA11 NSP4 forms a tetramer that binds Ca(2+) at its core, the CCD of human strain ST3 forms a pentamer lacking the bound Ca(2+) despite the residues (E120 and Q123) that coordinate Ca(2+) binding being conserved. In these previous studies, while the tetramer crystallized at neutral pH, the pentamer crystallized at low pH, suggesting that preference for a particular oligomeric state is pH dependent and that pH could influence Ca(2+) binding. Here, we sought to examine if the CCD of NSP4 from a single RV strain can exist in two oligomeric states regulated by Ca(2+) or pH. Biochemical, biophysical, and crystallographic studies show that while the CCD of SA11 NSP4 exhibits high-affinity binding to Ca(2+) at neutral pH and forms a tetramer, it does not bind Ca(2+) at low pH and forms a pentamer, and the transition from tetramer to pentamer is reversible with pH. Mutational analysis shows that Ca(2+) binding is necessary for the tetramer formation, as an E120A mutant forms a pentamer. We propose that the structural plasticity of NSP4 regulated by pH and Ca(2+) may form a basis for its pleiotropic functions during RV replication.

IMPORTANCE

The nonstructural protein NSP4 of rotavirus is a multifunctional protein that plays an important role in virus replication, morphogenesis, and pathogenesis. Previous crystallography studies of the coiled-coil domain (CCD) of NSP4 from two different rotavirus strains showed two distinct oligomeric states, a Ca(2+)-bound tetrameric state and a Ca(2+)-free pentameric state. Whether NSP4 CCD from the same strain can exist in different oligomeric states and what factors might regulate its oligomeric preferences are not known. This study used a combination of biochemical, biophysical, and crystallography techniques and found that the NSP4 CCD can undergo a reversible transition from a Ca(2+)-bound tetramer to a Ca(2+)-free pentamer in response to changes in pH. From these studies, we hypothesize that this remarkable structural adaptability of the CCD forms a basis for the pleiotropic functional properties of NSP4.

摘要

未标记

轮状病毒(RV)非结构蛋白4(NSP4)是一种毒力因子,它会破坏细胞内钙离子稳态,并在调节RV复制及RV诱导腹泻的病理生理过程中发挥多种作用。尽管其天然寡聚状态尚不清楚,但对来自两种不同毒株的NSP4卷曲螺旋结构域(CCD)的晶体学研究表明,它以四聚体或五聚体形式发挥作用。猿猴毒株SA11 NSP4的CCD形成一个在其核心结合钙离子的四聚体,而人毒株ST3的CCD形成一个缺乏结合钙离子的五聚体,尽管负责钙离子结合的残基(E120和Q123)是保守的。在这些先前的研究中,四聚体在中性pH下结晶,而五聚体在低pH下结晶,这表明对特定寡聚状态的偏好依赖于pH,并且pH可能影响钙离子结合。在这里,我们试图研究来自单一RV毒株的NSP4的CCD是否能以受钙离子或pH调节的两种寡聚状态存在。生化、生物物理和晶体学研究表明,虽然SA11 NSP4的CCD在中性pH下对钙离子表现出高亲和力结合并形成四聚体,但在低pH下它不结合钙离子并形成五聚体,并且从四聚体到五聚体的转变随pH是可逆的。突变分析表明,钙离子结合对于四聚体形成是必需的,因为E120A突变体形成五聚体。我们提出,由pH和钙离子调节的NSP4的结构可塑性可能构成其在RV复制过程中多效性功能的基础。

重要性

轮状病毒的非结构蛋白NSP4是一种多功能蛋白,在病毒复制、形态发生和发病机制中起重要作用。先前对来自两种不同轮状病毒毒株的NSP4卷曲螺旋结构域(CCD)的晶体学研究显示出两种不同的寡聚状态,一种是结合钙离子的四聚体状态,另一种是无钙离子的五聚体状态。来自同一毒株的NSP4 CCD是否能以不同的寡聚状态存在以及哪些因素可能调节其寡聚偏好尚不清楚。本研究结合了生化、生物物理和晶体学技术,发现NSP4 CCD可响应pH变化而经历从结合钙离子的四聚体到无钙离子的五聚体的可逆转变。从这些研究中,我们推测CCD这种显著的结构适应性构成了NSP4多效性功能特性的基础。

相似文献

1
Structural plasticity of the coiled-coil domain of rotavirus NSP4.
J Virol. 2014 Dec;88(23):13602-12. doi: 10.1128/JVI.02227-14. Epub 2014 Sep 17.
2
New tetrameric forms of the rotavirus NSP4 with antiparallel helices.
Arch Virol. 2018 Jun;163(6):1531-1547. doi: 10.1007/s00705-018-3753-6. Epub 2018 Feb 17.
3
Novel pentameric structure of the diarrhea-inducing region of the rotavirus enterotoxigenic protein NSP4.
J Virol. 2011 Dec;85(23):12721-32. doi: 10.1128/JVI.00349-11. Epub 2011 Sep 14.
4
Mutational analysis of the rotavirus NSP4 enterotoxic domain that binds to caveolin-1.
Virol J. 2013 Nov 13;10:336. doi: 10.1186/1743-422X-10-336.
5
Epitope mapping and use of epitope-specific antisera to characterize the VP5* binding site in rotavirus SA11 NSP4.
Virology. 2008 Mar 30;373(1):211-28. doi: 10.1016/j.virol.2007.11.021. Epub 2007 Dec 31.
6
The Rotavirus NSP4 Viroporin Domain is a Calcium-conducting Ion Channel.
Sci Rep. 2017 Mar 3;7:43487. doi: 10.1038/srep43487.
8
Rotavirus disrupts calcium homeostasis by NSP4 viroporin activity.
mBio. 2010 Nov 30;1(5):e00265-10. doi: 10.1128/mBio.00265-10.
10
Sequence and structural analyses of NSP4 proteins from human group A rotavirus strains detected in Tunisia.
Pathol Biol (Paris). 2014 Jun;62(3):146-51. doi: 10.1016/j.patbio.2013.10.006. Epub 2014 Mar 26.

引用本文的文献

1
N-Glycosylation of Rotavirus NSP4 Protein Affects Viral Replication and Pathogenesis.
J Virol. 2023 Jan 31;97(1):e0186122. doi: 10.1128/jvi.01861-22. Epub 2023 Jan 4.
3
Enterotoxigenic Heat-Stable Toxin and Ebola Virus Delta Peptide: Similarities and Differences.
Pathogens. 2022 Jan 27;11(2):170. doi: 10.3390/pathogens11020170.
4
Bent Into Shape: Folded Peptides to Mimic Protein Structure and Modulate Protein Function.
Pept Sci (Hoboken). 2020 Jan;112(1). doi: 10.1002/pep2.24145. Epub 2020 Jan 2.
5
Effects of rotavirus NSP4 protein on the immune response and protection of the S-VP8* nanoparticle rotavirus vaccine.
Vaccine. 2021 Jan 8;39(2):263-271. doi: 10.1016/j.vaccine.2020.12.005. Epub 2020 Dec 11.
6
Rotavirus induces intercellular calcium waves through ADP signaling.
Science. 2020 Nov 20;370(6519). doi: 10.1126/science.abc3621.
8
Beyond Channel Activity: Protein-Protein Interactions Involving Viroporins.
Subcell Biochem. 2018;88:329-377. doi: 10.1007/978-981-10-8456-0_15.
9
The Rotavirus NSP4 Viroporin Domain is a Calcium-conducting Ion Channel.
Sci Rep. 2017 Mar 3;7:43487. doi: 10.1038/srep43487.
10
Pathophysiological Consequences of Calcium-Conducting Viroporins.
Annu Rev Virol. 2015 Nov;2(1):473-96. doi: 10.1146/annurev-virology-100114-054846.

本文引用的文献

1
Processing of X-ray diffraction data collected in oscillation mode.
Methods Enzymol. 1997;276:307-26. doi: 10.1016/S0076-6879(97)76066-X.
4
Autophagy hijacked through viroporin-activated calcium/calmodulin-dependent kinase kinase-β signaling is required for rotavirus replication.
Proc Natl Acad Sci U S A. 2012 Dec 11;109(50):E3405-13. doi: 10.1073/pnas.1216539109. Epub 2012 Nov 26.
5
Rotavirus infection of cells in culture induces activation of RhoA and changes in the actin and tubulin cytoskeleton.
PLoS One. 2012;7(10):e47612. doi: 10.1371/journal.pone.0047612. Epub 2012 Oct 17.
6
Rotaviral enterotoxin nonstructural protein 4 targets mitochondria for activation of apoptosis during infection.
J Biol Chem. 2012 Oct 12;287(42):35004-35020. doi: 10.1074/jbc.M112.369595. Epub 2012 Aug 10.
7
Dissecting the Ca²⁺ entry pathways induced by rotavirus infection and NSP4-EGFP expression in Cos-7 cells.
Virus Res. 2012 Aug;167(2):285-96. doi: 10.1016/j.virusres.2012.05.012. Epub 2012 May 23.
9
Novel pentameric structure of the diarrhea-inducing region of the rotavirus enterotoxigenic protein NSP4.
J Virol. 2011 Dec;85(23):12721-32. doi: 10.1128/JVI.00349-11. Epub 2011 Sep 14.
10
Cross-linking of rotavirus outer capsid protein VP7 by antibodies or disulfides inhibits viral entry.
J Virol. 2011 Oct;85(20):10509-17. doi: 10.1128/JVI.00234-11. Epub 2011 Aug 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验