Suppr超能文献

轮状病毒 NSP4 蛋白的 N-糖基化影响病毒复制和发病机制。

N-Glycosylation of Rotavirus NSP4 Protein Affects Viral Replication and Pathogenesis.

机构信息

Department of Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan.

Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan.

出版信息

J Virol. 2023 Jan 31;97(1):e0186122. doi: 10.1128/jvi.01861-22. Epub 2023 Jan 4.

Abstract

Rotavirus (RV), the most common cause of gastroenteritis in children, carries a high economic and health burden worldwide. RV encodes six structural proteins and six nonstructural proteins (NSPs) that play different roles in viral replication. NSP4, a multifunctional protein involved in various viral replication processes, has two conserved N-glycosylation sites; however, the role of glycans remains elusive. Here, we used recombinant viruses generated by a reverse genetics system to determine the role of NSP4 N-glycosylation during viral replication and pathogenesis. The growth rate of recombinant viruses that lost one glycosylation site was as high as that of the wild-type virus. However, a recombinant virus that lost both glycosylation sites (glycosylation-defective virus) showed attenuated replication in cultured cell lines. Specifically, replications of glycosylation-defective virus in MA104 and HT29 cells were 10- and 100,000-fold lower, respectively, than that of the wild-type, suggesting that N-glycosylation of NSP4 plays a critical role in RV replication. The glycosylation-defective virus showed NSP4 mislocalization, delay of cytosolic Ca elevation, and less viroplasm formation in MA104 cells; however, these impairments were not observed in HT29 cells. Further analysis revealed that assembly of glycosylation-defective virus was severely impaired in HT29 cells but not in MA104 cells, suggesting that RV replication mechanism is highly cell type dependent. mouse experiments also showed that the glycosylation-defective virus was less pathogenic than the wild-type virus. Taken together, the data suggest that N-glycosylation of NSP4 plays a vital role in viral replication and pathogenicity. Rotavirus is the main cause of gastroenteritis in young children and infants worldwide, contributing to 128,500 deaths each year. Here, we used a reverse genetics approach to examine the role of NSP4 N-glycosylation. An N-glycosylation-defective virus showed attenuated and cell-type-dependent replication . In addition, mice infected with the N-glycosylation-defective virus had less severe diarrhea than mice infected with the wild type. These results suggest that N-glycosylation affects viral replication and pathogenesis. Considering the reduced pathogenicity and the high propagation rate in MA104 cells, this glycosylation-defective virus could be an ideal live attenuated vaccine candidate.

摘要

轮状病毒(RV)是导致儿童肠胃炎的最常见原因,在全球范围内造成了巨大的经济和健康负担。RV 编码六种结构蛋白和六种非结构蛋白(NSPs),这些蛋白在病毒复制过程中发挥着不同的作用。NSP4 是一种多功能蛋白,参与多种病毒复制过程,具有两个保守的 N-糖基化位点;然而,糖基化的作用仍不清楚。在这里,我们使用反向遗传学系统生成的重组病毒来确定 NSP4 N-糖基化在病毒复制和发病机制中的作用。失去一个糖基化位点的重组病毒的生长速度与野生型病毒一样高。然而,失去两个糖基化位点的重组病毒(糖基化缺陷病毒)在细胞系中的复制能力明显减弱。具体来说,糖基化缺陷病毒在 MA104 和 HT29 细胞中的复制分别比野生型低 10 倍和 100000 倍,表明 NSP4 的 N-糖基化在 RV 复制中起着关键作用。糖基化缺陷病毒在 MA104 细胞中表现出 NSP4 定位错误、细胞质 Ca 升高延迟和 viroplasm 形成减少;然而,在 HT29 细胞中没有观察到这些损伤。进一步的分析表明,糖基化缺陷病毒的组装在 HT29 细胞中受到严重损害,但在 MA104 细胞中没有,这表明 RV 复制机制高度依赖细胞类型。小鼠实验也表明,糖基化缺陷病毒的致病性比野生型病毒低。总之,数据表明 NSP4 的 N-糖基化在病毒复制和致病性中起着至关重要的作用。轮状病毒是全球范围内导致婴幼儿肠胃炎的主要原因,每年导致 12.85 万人死亡。在这里,我们使用反向遗传学方法研究了 NSP4 N-糖基化的作用。N-糖基化缺陷病毒的复制能力减弱,且具有细胞类型依赖性。此外,感染 N-糖基化缺陷病毒的小鼠比感染野生型病毒的小鼠腹泻症状较轻。这些结果表明 N-糖基化影响病毒的复制和发病机制。考虑到其致病性降低和在 MA104 细胞中的高繁殖率,这种糖基化缺陷病毒可能是一种理想的活减毒疫苗候选物。

相似文献

1
N-Glycosylation of Rotavirus NSP4 Protein Affects Viral Replication and Pathogenesis.
J Virol. 2023 Jan 31;97(1):e0186122. doi: 10.1128/jvi.01861-22. Epub 2023 Jan 4.
3
Rotavirus NSP1 Contributes to Intestinal Viral Replication, Pathogenesis, and Transmission.
mBio. 2021 Dec 21;12(6):e0320821. doi: 10.1128/mBio.03208-21. Epub 2021 Dec 14.
5
A functional NSP4 enterotoxin peptide secreted from rotavirus-infected cells.
J Virol. 2000 Dec;74(24):11663-70. doi: 10.1128/jvi.74.24.11663-11670.2000.
6
Characterization of Sialic Acid-Independent Simian Rotavirus Mutants in Viral Infection and Pathogenesis.
J Virol. 2023 Jan 31;97(1):e0139722. doi: 10.1128/jvi.01397-22. Epub 2023 Jan 5.
7
Structural plasticity of the coiled-coil domain of rotavirus NSP4.
J Virol. 2014 Dec;88(23):13602-12. doi: 10.1128/JVI.02227-14. Epub 2014 Sep 17.
10
Mutations in rotavirus nonstructural glycoprotein NSP4 are associated with altered virus virulence.
J Virol. 1998 May;72(5):3666-72. doi: 10.1128/JVI.72.5.3666-3672.1998.

引用本文的文献

2
Broad-spectrum synthetic carbohydrate receptors (SCRs) inhibit viral entry across multiple virus families.
Sci Adv. 2025 Aug 29;11(35):eady3554. doi: 10.1126/sciadv.ady3554. Epub 2025 Aug 27.
7
Rotaviruses and Rotavirus Vaccines: Special Issue Editorial.
Viruses. 2024 Oct 24;16(11):1665. doi: 10.3390/v16111665.
10
Generation of single-round infectious rotavirus with a mutation in the intermediate capsid protein VP6.
J Virol. 2024 Jul 23;98(7):e0076224. doi: 10.1128/jvi.00762-24. Epub 2024 Jun 5.

本文引用的文献

1
Rotavirus NSP1 Contributes to Intestinal Viral Replication, Pathogenesis, and Transmission.
mBio. 2021 Dec 21;12(6):e0320821. doi: 10.1128/mBio.03208-21. Epub 2021 Dec 14.
2
iPSC screening for drug repurposing identifies anti-RNA virus agents modulating host cell susceptibility.
FEBS Open Bio. 2021 May;11(5):1452-1464. doi: 10.1002/2211-5463.13153. Epub 2021 Apr 6.
3
SARS-CoV-2 infection of human iPSC-derived cardiac cells reflects cytopathic features in hearts of patients with COVID-19.
Sci Transl Med. 2021 Apr 21;13(590). doi: 10.1126/scitranslmed.abf7872. Epub 2021 Mar 15.
6
Reverse Genetics System for a Human Group A Rotavirus.
J Virol. 2020 Jan 6;94(2). doi: 10.1128/JVI.00963-19.
7
The Guanine Nucleotide Exchange Factor GBF1 Participates in Rotavirus Replication.
J Virol. 2019 Sep 12;93(19). doi: 10.1128/JVI.01062-19. Print 2019 Oct 1.
8
Functional Involvement of Interferon-Inducible Transmembrane Proteins in Antiviral Immunity.
Front Microbiol. 2019 May 16;10:1097. doi: 10.3389/fmicb.2019.01097. eCollection 2019.
10
Human Norovirus Propagation in Human Induced Pluripotent Stem Cell-Derived Intestinal Epithelial Cells.
Cell Mol Gastroenterol Hepatol. 2019;7(3):686-688.e5. doi: 10.1016/j.jcmgh.2018.11.001. Epub 2018 Dec 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验