Suppr超能文献

预测住院或死亡风险:一项基于人群的回顾性分析。

Predicting risk of hospitalisation or death: a retrospective population-based analysis.

作者信息

Louis Daniel Z, Robeson Mary, McAna John, Maio Vittorio, Keith Scott W, Liu Mengdan, Gonnella Joseph S, Grilli Roberto

机构信息

Center for Research in Medical Education and Health Care, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, USA.

Jefferson School of Population Health, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.

出版信息

BMJ Open. 2014 Sep 17;4(9):e005223. doi: 10.1136/bmjopen-2014-005223.

Abstract

OBJECTIVES

Develop predictive models using an administrative healthcare database that provide information for Patient-Centred Medical Homes to proactively identify patients at risk of hospitalisation for conditions that may be impacted through improved patient care.

DESIGN

Retrospective healthcare utilisation analysis with multivariate logistic regression models.

DATA

A population-based longitudinal database of residents served by the Emilia-Romagna, Italy, health service in the years 2004-2012 including demographic information and utilisation of health services by 3,726,380 people aged ≥18 years.

OUTCOME MEASURES

Models designed to predict risk of hospitalisation or death in 2012 for problems that are potentially avoidable were developed and evaluated using the area under the receiver operating curve C-statistic, in terms of their sensitivity, specificity and positive predictive value, and for calibration to assess performance across levels of predicted risk.

RESULTS

Among the 3,726,380 adult residents of Emilia-Romagna at the end of 2011, 449,163 (12.1%) were hospitalised in 2012; 4.2% were hospitalised for the selected conditions or died in 2012 (3.6% hospitalised, 1.3% died). The C-statistic for predicting 2012 outcomes was 0.856. The model was well calibrated across categories of predicted risk. For those patients in the highest predicted risk decile group, the average predicted risk was 23.9% and the actual prevalence of hospitalisation or death was 24.2%.

CONCLUSIONS

We have developed a population-based model using a longitudinal administrative database that identifies the risk of hospitalisation for residents of the Emilia-Romagna region with a level of performance as high as, or higher than, similar models. The results of this model, along with profiles of patients identified as high risk are being provided to the physicians and other healthcare professionals associated with the Patient Centred Medical Homes to aid in planning for care management and interventions that may reduce their patients' likelihood of a preventable, high-cost hospitalisation.

摘要

目标

利用一个行政医疗保健数据库开发预测模型,该数据库可为以患者为中心的医疗之家提供信息,以便主动识别因某些状况而有住院风险的患者,这些状况可能通过改善患者护理而受到影响。

设计

采用多变量逻辑回归模型进行回顾性医疗保健利用分析。

数据

基于意大利艾米利亚 - 罗马涅地区居民的纵向数据库,涵盖2004 - 2012年期间3,726,380名18岁及以上人群的人口统计信息和医疗服务利用情况。

结果指标

开发并使用受试者工作特征曲线下面积C统计量评估旨在预测2012年因潜在可避免问题而住院或死亡风险的模型,评估其敏感性、特异性和阳性预测值,并进行校准以评估预测风险水平的整体表现。

结果

在2011年底艾米利亚 - 罗马涅的3,726,380名成年居民中,2012年有449,163人(12.1%)住院;4.2%的人因选定状况住院或在2012年死亡(3.6%住院,1.3%死亡)。预测2012年结果的C统计量为0.856。该模型在预测风险类别中校准良好。对于预测风险最高的十分位数组中的患者,平均预测风险为23.9%,实际住院或死亡患病率为24.2%。

结论

我们利用纵向行政数据库开发了一个基于人群的模型,该模型识别出艾米利亚 - 罗马涅地区居民的住院风险,其表现水平与类似模型相当或更高。该模型的结果以及被确定为高风险患者的概况正在提供给与以患者为中心的医疗之家相关的医生和其他医疗保健专业人员,以帮助规划护理管理和干预措施,从而降低其患者发生可预防的高成本住院的可能性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef72/4166245/346ef71ab9f1/bmjopen2014005223f01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验