Suppr超能文献

量化癌症的潜在格局和发展路径。

Quantifying the underlying landscape and paths of cancer.

作者信息

Li Chunhe, Wang Jin

机构信息

Department of Chemistry, State University of New York at Stony Brook, Stony Brook, NY, USA Department of Physics, State University of New York at Stony Brook, Stony Brook, NY, USA.

Department of Chemistry, State University of New York at Stony Brook, Stony Brook, NY, USA Department of Physics, State University of New York at Stony Brook, Stony Brook, NY, USA State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, People's Republic of China

出版信息

J R Soc Interface. 2014 Nov 6;11(100):20140774. doi: 10.1098/rsif.2014.0774.

Abstract

Cancer is a disease regulated by the underlying gene networks. The emergence of normal and cancer states as well as the transformation between them can be thought of as a result of the gene network interactions and associated changes. We developed a global potential landscape and path framework to quantify cancer and associated processes. We constructed a cancer gene regulatory network based on the experimental evidences and uncovered the underlying landscape. The resulting tristable landscape characterizes important biological states: normal, cancer and apoptosis. The landscape topography in terms of barrier heights between stable state attractors quantifies the global stability of the cancer network system. We propose two mechanisms of cancerization: one is by the changes of landscape topography through the changes in regulation strengths of the gene networks. The other is by the fluctuations that help the system to go over the critical barrier at fixed landscape topography. The kinetic paths from least action principle quantify the transition processes among normal state, cancer state and apoptosis state. The kinetic rates provide the quantification of transition speeds among normal, cancer and apoptosis attractors. By the global sensitivity analysis of the gene network parameters on the landscape topography, we uncovered some key gene regulations determining the transitions between cancer and normal states. This can be used to guide the design of new anti-cancer tactics, through cocktail strategy of targeting multiple key regulation links simultaneously, for preventing cancer occurrence or transforming the early cancer state back to normal state.

摘要

癌症是一种由潜在基因网络调控的疾病。正常状态和癌症状态的出现以及它们之间的转变可被视为基因网络相互作用及相关变化的结果。我们开发了一个全局势景观和路径框架来量化癌症及相关过程。我们基于实验证据构建了一个癌症基因调控网络,并揭示了其潜在景观。由此产生的三稳态景观表征了重要的生物学状态:正常、癌症和凋亡。根据稳定状态吸引子之间的势垒高度所确定的景观地形量化了癌症网络系统的全局稳定性。我们提出了两种癌变机制:一种是通过基因网络调控强度的变化导致景观地形的改变;另一种是在固定的景观地形下,通过涨落帮助系统越过临界势垒。基于最小作用原理的动力学路径量化了正常状态、癌症状态和凋亡状态之间的转变过程。动力学速率提供了正常、癌症和凋亡吸引子之间转变速度的量化。通过对基因网络参数对景观地形的全局敏感性分析,我们揭示了一些决定癌症状态与正常状态之间转变的关键基因调控。这可用于指导新的抗癌策略的设计,即通过同时靶向多个关键调控环节的鸡尾酒策略,来预防癌症发生或将早期癌症状态转变回正常状态。

相似文献

1
Quantifying the underlying landscape and paths of cancer.
J R Soc Interface. 2014 Nov 6;11(100):20140774. doi: 10.1098/rsif.2014.0774.
2
Quantifying cell fate decisions for differentiation and reprogramming of a human stem cell network: landscape and biological paths.
PLoS Comput Biol. 2013;9(8):e1003165. doi: 10.1371/journal.pcbi.1003165. Epub 2013 Aug 1.
3
Quantifying the Landscape for Development and Cancer from a Core Cancer Stem Cell Circuit.
Cancer Res. 2015 Jul 1;75(13):2607-18. doi: 10.1158/0008-5472.CAN-15-0079. Epub 2015 May 13.
4
Quantifying the landscape and kinetic paths for epithelial-mesenchymal transition from a core circuit.
Phys Chem Chem Phys. 2016 Jul 21;18(27):17949-56. doi: 10.1039/c6cp03174a. Epub 2016 Jun 21.
5
Energy Landscape Analysis of the Epithelial-Mesenchymal Transition Network.
Methods Mol Biol. 2022;2488:145-157. doi: 10.1007/978-1-0716-2277-3_11.
6
Quantifying Waddington landscapes and paths of non-adiabatic cell fate decisions for differentiation, reprogramming and transdifferentiation.
J R Soc Interface. 2013 Oct 16;10(89):20130787. doi: 10.1098/rsif.2013.0787. Print 2013 Dec 6.
7
Landscape and kinetic path quantify critical transitions in epithelial-mesenchymal transition.
Biophys J. 2021 Oct 19;120(20):4484-4500. doi: 10.1016/j.bpj.2021.08.043. Epub 2021 Sep 2.
9
Dynamical analysis of cellular ageing by modeling of gene regulatory network based attractor landscape.
PLoS One. 2018 Jun 1;13(6):e0197838. doi: 10.1371/journal.pone.0197838. eCollection 2018.
10
A global and physical mechanism of gastric cancer formation and progression.
J Theor Biol. 2021 Jul 7;520:110643. doi: 10.1016/j.jtbi.2021.110643. Epub 2021 Feb 23.

引用本文的文献

3
Inertial effect of cell state velocity on the quiescence-proliferation fate decision.
NPJ Syst Biol Appl. 2024 Oct 2;10(1):111. doi: 10.1038/s41540-024-00428-3.
4
Unveiling the Dynamics behind Glioblastoma Multiforme Single-Cell Data Heterogeneity.
Int J Mol Sci. 2024 Apr 30;25(9):4894. doi: 10.3390/ijms25094894.
5
Data-driven energy landscape reveals critical genes in cancer progression.
NPJ Syst Biol Appl. 2024 Mar 8;10(1):27. doi: 10.1038/s41540-024-00354-4.
6
Quantifying cancer cell plasticity with gene regulatory networks and single-cell dynamics.
Front Netw Physiol. 2023 Sep 4;3:1225736. doi: 10.3389/fnetp.2023.1225736. eCollection 2023.
7
Data mining and mathematical models in cancer prognosis and prediction.
Med Rev (2021). 2022 Jun 29;2(3):285-307. doi: 10.1515/mr-2021-0026. eCollection 2022 Jun.
8
Modeling signaling pathways in biology with MaBoSS: From one single cell to a dynamic population of heterogeneous interacting cells.
Comput Struct Biotechnol J. 2022 Oct 7;20:5661-5671. doi: 10.1016/j.csbj.2022.10.003. eCollection 2022.
9
Quantification of the Landscape for Revealing the Underlying Mechanism of Intestinal-Type Gastric Cancer.
Front Oncol. 2022 May 3;12:853768. doi: 10.3389/fonc.2022.853768. eCollection 2022.

本文引用的文献

1
Stem cell differentiation as a many-body problem.
Proc Natl Acad Sci U S A. 2014 Jul 15;111(28):10185-90. doi: 10.1073/pnas.1408561111. Epub 2014 Jun 19.
2
Epigenetic state network approach for describing cell phenotypic transitions.
Interface Focus. 2014 Jun 6;4(3):20130068. doi: 10.1098/rsfs.2013.0068.
3
Time scales in epigenetic dynamics and phenotypic heterogeneity of embryonic stem cells.
PLoS Comput Biol. 2013;9(12):e1003380. doi: 10.1371/journal.pcbi.1003380. Epub 2013 Dec 12.
4
Quantifying Waddington landscapes and paths of non-adiabatic cell fate decisions for differentiation, reprogramming and transdifferentiation.
J R Soc Interface. 2013 Oct 16;10(89):20130787. doi: 10.1098/rsif.2013.0787. Print 2013 Dec 6.
5
Quantifying cell fate decisions for differentiation and reprogramming of a human stem cell network: landscape and biological paths.
PLoS Comput Biol. 2013;9(8):e1003165. doi: 10.1371/journal.pcbi.1003165. Epub 2013 Aug 1.
6
A minimal transcriptional controlling network of regulatory T cell development.
J Phys Chem B. 2013 Oct 24;117(42):12995-3004. doi: 10.1021/jp402306g. Epub 2013 May 20.
7
Large-scale event extraction from literature with multi-level gene normalization.
PLoS One. 2013 Apr 17;8(4):e55814. doi: 10.1371/journal.pone.0055814. Print 2013.
8
Engineered genetic information processing circuits.
Wiley Interdiscip Rev Syst Biol Med. 2013 May-Jun;5(3):273-87. doi: 10.1002/wsbm.1216. Epub 2013 Feb 26.
10
Lessons from tumor reversion for cancer treatment.
Curr Opin Oncol. 2013 Jan;25(1):59-65. doi: 10.1097/CCO.0b013e32835b7d21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验