Suppr超能文献

用于描述细胞表型转变的表观遗传状态网络方法。

Epigenetic state network approach for describing cell phenotypic transitions.

机构信息

Department of Biological Sciences , Virginia Tech , Blacksburg, VA 24060 , USA.

Department of Physics , University of Miami , Coral Gables, FL 33124 , USA.

出版信息

Interface Focus. 2014 Jun 6;4(3):20130068. doi: 10.1098/rsfs.2013.0068.

Abstract

Recent breakthroughs of cell phenotype reprogramming impose theoretical challenges on unravelling the complexity of large circuits maintaining cell phenotypes coupled at many different epigenetic and gene regulation levels, and quantitatively describing the phenotypic transition dynamics. A popular picture proposed by Waddington views cell differentiation as a ball sliding down a landscape with valleys corresponding to different cell types separated by ridges. Based on theories of dynamical systems, we establish a novel 'epigenetic state network' framework that captures the global architecture of cell phenotypes, which allows us to translate the metaphorical low-dimensional Waddington epigenetic landscape concept into a simple-yet-predictive rigorous mathematical framework of cell phenotypic transitions. Specifically, we simplify a high-dimensional epigenetic landscape into a collection of discrete states corresponding to stable cell phenotypes connected by optimal transition pathways among them. We then apply the approach to the phenotypic transition processes among fibroblasts (FBs), pluripotent stem cells (PSCs) and cardiomyocytes (CMs). The epigenetic state network for this case predicts three major transition pathways connecting FBs and CMs. One goes by way of PSCs. The other two pathways involve transdifferentiation either indirectly through cardiac progenitor cells or directly from FB to CM. The predicted pathways and multiple intermediate states are supported by existing microarray data and other experiments. Our approach provides a theoretical framework for studying cell phenotypic transitions. Future studies at single-cell levels can directly test the model predictions.

摘要

最近细胞表型重编程的突破对揭示维持细胞表型的大电路的复杂性提出了理论挑战,这些电路在许多不同的表观遗传和基因调控水平上耦合,并对表型转变动力学进行定量描述。Waddington 提出的一个流行观点认为,细胞分化是一个球在一个景观上滑动,景观中的山谷对应于不同的细胞类型,由山脊隔开。基于动力系统理论,我们建立了一个新的“表观遗传状态网络”框架,该框架捕捉到了细胞表型的全局结构,使我们能够将隐喻的低维 Waddington 表观遗传景观概念转化为一个简单而具有预测性的细胞表型转变的严格数学框架。具体来说,我们将高维表观遗传景观简化为一组离散状态,这些状态对应于稳定的细胞表型,它们通过其中的最优转变途径连接。然后,我们将该方法应用于成纤维细胞 (FB)、多能干细胞 (PSC) 和心肌细胞 (CM) 之间的表型转变过程。这种情况下的表观遗传状态网络预测了连接 FB 和 CM 的三种主要转变途径。一种途径是通过 PSC。另外两条途径要么通过心脏祖细胞间接进行,要么直接从 FB 到 CM 进行。预测的途径和多个中间状态得到了现有的微阵列数据和其他实验的支持。我们的方法为研究细胞表型转变提供了一个理论框架。未来在单细胞水平上的研究可以直接检验模型预测。

相似文献

1
Epigenetic state network approach for describing cell phenotypic transitions.
Interface Focus. 2014 Jun 6;4(3):20130068. doi: 10.1098/rsfs.2013.0068.
2
A deterministic map of Waddington's epigenetic landscape for cell fate specification.
BMC Syst Biol. 2011 May 27;5:85. doi: 10.1186/1752-0509-5-85.
3
Quantifying the Stability of Coupled Genetic and Epigenetic Switches With Variational Methods.
Front Genet. 2021 Jan 22;11:636724. doi: 10.3389/fgene.2020.636724. eCollection 2020.
4
Quantifying Waddington landscapes and paths of non-adiabatic cell fate decisions for differentiation, reprogramming and transdifferentiation.
J R Soc Interface. 2013 Oct 16;10(89):20130787. doi: 10.1098/rsif.2013.0787. Print 2013 Dec 6.
5
Quantitative Modelling of the Waddington Epigenetic Landscape.
Methods Mol Biol. 2019;1975:157-171. doi: 10.1007/978-1-4939-9224-9_7.
7
Dynamics of cell-type transition mediated by epigenetic modifications.
J Theor Biol. 2024 Jan 21;577:111664. doi: 10.1016/j.jtbi.2023.111664. Epub 2023 Nov 16.
8
Not just a colourful metaphor: modelling the landscape of cellular development using Hopfield networks.
NPJ Syst Biol Appl. 2016 Feb 18;2:16001. doi: 10.1038/npjsba.2016.1. eCollection 2016.
9
Phenotypic Plasticity and Cell Fate Decisions in Cancer: Insights from Dynamical Systems Theory.
Cancers (Basel). 2017 Jun 22;9(7):70. doi: 10.3390/cancers9070070.
10
Modeling the epigenetic attractors landscape: toward a post-genomic mechanistic understanding of development.
Front Genet. 2015 Apr 23;6:160. doi: 10.3389/fgene.2015.00160. eCollection 2015.

引用本文的文献

1
scNODE : generative model for temporal single cell transcriptomic data prediction.
Bioinformatics. 2024 Sep 1;40(Suppl 2):ii146-ii154. doi: 10.1093/bioinformatics/btae393.
2
Optimal phenotypic adaptation in fluctuating environments.
Biophys J. 2023 Nov 21;122(22):4414-4424. doi: 10.1016/j.bpj.2023.10.019. Epub 2023 Oct 24.
3
Constructing maps between distinct cell fates and parametric conditions by systematic perturbations.
Bioinformatics. 2023 Oct 3;39(10). doi: 10.1093/bioinformatics/btad624.
4
Mitochondrial networks through the lens of mathematics.
Phys Biol. 2023 Jul 14;20(5):051001. doi: 10.1088/1478-3975/acdcdb.
6
Mapping transcriptomic vector fields of single cells.
Cell. 2022 Feb 17;185(4):690-711.e45. doi: 10.1016/j.cell.2021.12.045. Epub 2022 Feb 1.
7
Surface modification of electrospun fibers with mechano-growth factor for mitigating the foreign-body reaction.
Bioact Mater. 2021 Mar 1;6(9):2983-2998. doi: 10.1016/j.bioactmat.2021.02.020. eCollection 2021 Sep.
8
Quantifying the Stability of Coupled Genetic and Epigenetic Switches With Variational Methods.
Front Genet. 2021 Jan 22;11:636724. doi: 10.3389/fgene.2020.636724. eCollection 2020.
9
Mathematical Modeling of Plasticity and Heterogeneity in EMT.
Methods Mol Biol. 2021;2179:385-413. doi: 10.1007/978-1-0716-0779-4_28.
10
Identification via Numerical Computation of Transcriptional Determinants of a Cell Phenotype Decision Making.
Front Genet. 2019 Jun 21;10:575. doi: 10.3389/fgene.2019.00575. eCollection 2019.

本文引用的文献

1
Quantifying Waddington landscapes and paths of non-adiabatic cell fate decisions for differentiation, reprogramming and transdifferentiation.
J R Soc Interface. 2013 Oct 16;10(89):20130787. doi: 10.1098/rsif.2013.0787. Print 2013 Dec 6.
2
Eddy current and coupled landscapes for nonadiabatic and nonequilibrium complex system dynamics.
Proc Natl Acad Sci U S A. 2013 Sep 10;110(37):14930-5. doi: 10.1073/pnas.1305604110. Epub 2013 Aug 26.
4
Quantifying cell fate decisions for differentiation and reprogramming of a human stem cell network: landscape and biological paths.
PLoS Comput Biol. 2013;9(8):e1003165. doi: 10.1371/journal.pcbi.1003165. Epub 2013 Aug 1.
5
Induction of a hemogenic program in mouse fibroblasts.
Cell Stem Cell. 2013 Aug 1;13(2):205-18. doi: 10.1016/j.stem.2013.05.024. Epub 2013 Jun 13.
6
A molecular roadmap of reprogramming somatic cells into iPS cells.
Cell. 2012 Dec 21;151(7):1617-32. doi: 10.1016/j.cell.2012.11.039.
8
Bistability, bifurcations, and Waddington's epigenetic landscape.
Curr Biol. 2012 Jun 5;22(11):R458-66. doi: 10.1016/j.cub.2012.03.045.
9
Network topologies and dynamics leading to endotoxin tolerance and priming in innate immune cells.
PLoS Comput Biol. 2012;8(5):e1002526. doi: 10.1371/journal.pcbi.1002526. Epub 2012 May 17.
10
Systematic search for recipes to generate induced pluripotent stem cells.
PLoS Comput Biol. 2011 Dec;7(12):e1002300. doi: 10.1371/journal.pcbi.1002300. Epub 2011 Dec 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验