Department of Biological Sciences , Virginia Tech , Blacksburg, VA 24060 , USA.
Department of Physics , University of Miami , Coral Gables, FL 33124 , USA.
Interface Focus. 2014 Jun 6;4(3):20130068. doi: 10.1098/rsfs.2013.0068.
Recent breakthroughs of cell phenotype reprogramming impose theoretical challenges on unravelling the complexity of large circuits maintaining cell phenotypes coupled at many different epigenetic and gene regulation levels, and quantitatively describing the phenotypic transition dynamics. A popular picture proposed by Waddington views cell differentiation as a ball sliding down a landscape with valleys corresponding to different cell types separated by ridges. Based on theories of dynamical systems, we establish a novel 'epigenetic state network' framework that captures the global architecture of cell phenotypes, which allows us to translate the metaphorical low-dimensional Waddington epigenetic landscape concept into a simple-yet-predictive rigorous mathematical framework of cell phenotypic transitions. Specifically, we simplify a high-dimensional epigenetic landscape into a collection of discrete states corresponding to stable cell phenotypes connected by optimal transition pathways among them. We then apply the approach to the phenotypic transition processes among fibroblasts (FBs), pluripotent stem cells (PSCs) and cardiomyocytes (CMs). The epigenetic state network for this case predicts three major transition pathways connecting FBs and CMs. One goes by way of PSCs. The other two pathways involve transdifferentiation either indirectly through cardiac progenitor cells or directly from FB to CM. The predicted pathways and multiple intermediate states are supported by existing microarray data and other experiments. Our approach provides a theoretical framework for studying cell phenotypic transitions. Future studies at single-cell levels can directly test the model predictions.
最近细胞表型重编程的突破对揭示维持细胞表型的大电路的复杂性提出了理论挑战,这些电路在许多不同的表观遗传和基因调控水平上耦合,并对表型转变动力学进行定量描述。Waddington 提出的一个流行观点认为,细胞分化是一个球在一个景观上滑动,景观中的山谷对应于不同的细胞类型,由山脊隔开。基于动力系统理论,我们建立了一个新的“表观遗传状态网络”框架,该框架捕捉到了细胞表型的全局结构,使我们能够将隐喻的低维 Waddington 表观遗传景观概念转化为一个简单而具有预测性的细胞表型转变的严格数学框架。具体来说,我们将高维表观遗传景观简化为一组离散状态,这些状态对应于稳定的细胞表型,它们通过其中的最优转变途径连接。然后,我们将该方法应用于成纤维细胞 (FB)、多能干细胞 (PSC) 和心肌细胞 (CM) 之间的表型转变过程。这种情况下的表观遗传状态网络预测了连接 FB 和 CM 的三种主要转变途径。一种途径是通过 PSC。另外两条途径要么通过心脏祖细胞间接进行,要么直接从 FB 到 CM 进行。预测的途径和多个中间状态得到了现有的微阵列数据和其他实验的支持。我们的方法为研究细胞表型转变提供了一个理论框架。未来在单细胞水平上的研究可以直接检验模型预测。