Centre for Integrative Physiology, University of Edinburgh, Edinburgh, EH8 9XF, United Kingdom, Euan MacDonald Centre for Motor Neuron Disease Research, University of Edinburgh, Edinburgh, EH16 4SB, United Kingdom.
Centre for Neuroregeneration, University of Edinburgh, Edinburgh, EH16 4SB, United Kingdom.
J Neurosci. 2014 Sep 17;34(38):12904-18. doi: 10.1523/JNEUROSCI.1725-14.2014.
Postnatal synapse elimination plays a critical role in sculpting and refining neural connectivity throughout the central and peripheral nervous systems, including the removal of supernumerary axonal inputs from neuromuscular junctions (NMJs). Here, we reveal a novel and important role for myelinating glia in regulating synapse elimination at the mouse NMJ, where loss of a single glial cell protein, the glial isoform of neurofascin (Nfasc155), was sufficient to disrupt postnatal remodeling of synaptic circuitry. Neuromuscular synapses were formed normally in mice lacking Nfasc155, including the establishment of robust neuromuscular synaptic transmission. However, loss of Nfasc155 was sufficient to cause a robust delay in postnatal synapse elimination at the NMJ across all muscle groups examined. Nfasc155 regulated neuronal remodeling independently of its canonical role in forming paranodal axo-glial junctions, as synapse elimination occurred normally in mice lacking the axonal paranodal protein Caspr. Rather, high-resolution proteomic screens revealed that loss of Nfasc155 from glial cells was sufficient to disrupt neuronal cytoskeletal organization and trafficking pathways, resulting in reduced levels of neurofilament light (NF-L) protein in distal axons and motor nerve terminals. Mice lacking NF-L recapitulated the delayed synapse elimination phenotype observed in mice lacking Nfasc155, suggesting that glial cells regulate synapse elimination, at least in part, through modulation of the axonal cytoskeleton. Together, our study reveals a glial cell-dependent pathway regulating the sculpting of neuronal connectivity and synaptic circuitry in the peripheral nervous system.
出生后的突触消除在中枢和外周神经系统的神经连接的塑造和精炼中起着关键作用,包括去除神经肌肉接点(NMJ)中多余的轴突输入。在这里,我们揭示了髓鞘胶质细胞在调节小鼠 NMJ 处的突触消除方面的一个新的和重要作用,在那里单个神经胶质细胞蛋白,神经束蛋白的神经胶质同工型(Nfasc155)的丧失足以破坏突触电路的出生后重塑。在缺乏 Nfasc155 的小鼠中,神经肌肉突触正常形成,包括建立强大的神经肌肉突触传递。然而,Nfasc155 的缺失足以导致 NMJ 处的出生后突触消除出现明显延迟,这在所有检查的肌肉群中都有表现。Nfasc155 调节神经元重塑,而不依赖于其在形成旁轴突-神经胶质连接中的典型作用,因为在缺乏轴突旁节蛋白 Caspr 的小鼠中,突触消除正常发生。相反,高分辨率蛋白质组学筛选表明,胶质细胞中 Nfasc155 的缺失足以破坏神经元细胞骨架组织和运输途径,导致远端轴突和运动神经末梢中的神经丝轻链(NF-L)蛋白水平降低。缺乏 NF-L 的小鼠再现了在缺乏 Nfasc155 的小鼠中观察到的延迟突触消除表型,表明胶质细胞至少部分通过调节轴突细胞骨架来调节突触消除。总之,我们的研究揭示了一个依赖于胶质细胞的途径,该途径调节外周神经系统中神经元连接和突触电路的塑造。