Suppr超能文献

迁移在表型转换进化中的作用。

The role of migration in the evolution of phenotypic switching.

作者信息

Carja Oana, Furrow Robert E, Feldman Marcus W

机构信息

Department of Biology, Stanford University, Stanford, CA, USA

Department of Biology, Stanford University, Stanford, CA, USA.

出版信息

Proc Biol Sci. 2014 Nov 7;281(1794):20141677. doi: 10.1098/rspb.2014.1677.

Abstract

Stochastic switching is an example of phenotypic bet hedging, where an individual can switch between different phenotypic states in a fluctuating environment. Although the evolution of stochastic switching has been studied when the environment varies temporally, there has been little theoretical work on the evolution of phenotypic switching under both spatially and temporally fluctuating selection pressures. Here, we explore the interaction of temporal and spatial change in determining the evolutionary dynamics of phenotypic switching. We find that spatial variation in selection is important; when selection pressures are similar across space, migration can decrease the rate of switching, but when selection pressures differ spatially, increasing migration between demes can facilitate the evolution of higher rates of switching. These results may help explain the diverse array of non-genetic contributions to phenotypic variability and phenotypic inheritance observed in both wild and experimental populations.

摘要

随机切换是表型风险对冲的一个例子,在波动的环境中,个体可以在不同的表型状态之间切换。虽然已经研究了环境随时间变化时随机切换的进化,但在空间和时间波动的选择压力下,关于表型切换进化的理论研究很少。在这里,我们探讨了时间和空间变化在决定表型切换进化动态中的相互作用。我们发现选择的空间变化很重要;当空间上的选择压力相似时,迁移可以降低切换速率,但当选择压力在空间上不同时,增加种群间的迁移可以促进更高切换速率的进化。这些结果可能有助于解释在野生和实验种群中观察到的对表型变异性和表型遗传的各种非遗传贡献。

相似文献

1
The role of migration in the evolution of phenotypic switching.
Proc Biol Sci. 2014 Nov 7;281(1794):20141677. doi: 10.1098/rspb.2014.1677.
2
The evolution of phenotypic switching in subdivided populations.
Genetics. 2014 Apr;196(4):1185-97. doi: 10.1534/genetics.114.161364. Epub 2014 Feb 4.
3
Evolution of stochastic switching rates in asymmetric fitness landscapes.
Genetics. 2009 Aug;182(4):1159-64. doi: 10.1534/genetics.109.103333. Epub 2009 May 27.
4
Experimental evolution of bet hedging.
Nature. 2009 Nov 5;462(7269):90-3. doi: 10.1038/nature08504.
5
Shortsighted Evolution Constrains the Efficacy of Long-Term Bet Hedging.
Am Nat. 2019 Mar;193(3):409-423. doi: 10.1086/701786. Epub 2019 Jan 24.
6
The evolutionary advantage of cultural memory on heterogeneous contact networks.
Theor Popul Biol. 2019 Oct;129:118-125. doi: 10.1016/j.tpb.2018.09.006. Epub 2019 Feb 4.
7
Evolution in changing environments: modifiers of mutation, recombination, and migration.
Proc Natl Acad Sci U S A. 2014 Dec 16;111(50):17935-40. doi: 10.1073/pnas.1417664111. Epub 2014 Nov 26.
8
Emergence of phenotype switching through continuous and discontinuous evolutionary transitions.
Phys Biol. 2015 May 28;12(4):046004. doi: 10.1088/1478-3975/12/4/046004.
9
The evolutionary emergence of stochastic phenotype switching in bacteria.
Microb Cell Fact. 2011 Aug 30;10 Suppl 1(Suppl 1):S14. doi: 10.1186/1475-2859-10-S1-S14.
10
The concept of fitness in fluctuating environments.
Trends Ecol Evol. 2015 May;30(5):273-81. doi: 10.1016/j.tree.2015.03.007. Epub 2015 Apr 3.

引用本文的文献

1
Evolution of epigenetic transmission when selection acts on fecundity versus viability.
Philos Trans R Soc Lond B Biol Sci. 2021 Jun 7;376(1826):20200128. doi: 10.1098/rstb.2020.0128. Epub 2021 Apr 19.
2
Evolutionary Rescue Through Partly Heritable Phenotypic Variability.
Genetics. 2019 Mar;211(3):977-988. doi: 10.1534/genetics.118.301758. Epub 2019 Jan 29.
3
The evolutionary advantage of heritable phenotypic heterogeneity.
Sci Rep. 2017 Jul 11;7(1):5090. doi: 10.1038/s41598-017-05214-2.

本文引用的文献

1
The evolution of phenotypic switching in subdivided populations.
Genetics. 2014 Apr;196(4):1185-97. doi: 10.1534/genetics.114.161364. Epub 2014 Feb 4.
2
The innate growth bistability and fitness landscapes of antibiotic-resistant bacteria.
Science. 2013 Nov 29;342(6162):1237435. doi: 10.1126/science.1237435.
3
Evolution of stress response in the face of unreliable environmental signals.
PLoS Comput Biol. 2012;8(8):e1002627. doi: 10.1371/journal.pcbi.1002627. Epub 2012 Aug 16.
4
Bet hedging in yeast by heterogeneous, age-correlated expression of a stress protectant.
PLoS Biol. 2012;10(5):e1001325. doi: 10.1371/journal.pbio.1001325. Epub 2012 May 8.
5
Understanding transgenerational epigenetic inheritance via the gametes in mammals.
Nat Rev Genet. 2012 Jan 31;13(3):153-62. doi: 10.1038/nrg3188.
6
Evolution of migration in a periodically changing environment.
Am Nat. 2011 Feb;177(2):188-201. doi: 10.1086/657953.
7
On the evolution of mutation in changing environments: recombination and phenotypic switching.
Genetics. 2011 Mar;187(3):837-51. doi: 10.1534/genetics.110.123620. Epub 2011 Jan 6.
8
Evolutionary bet-hedging in the real world: empirical evidence and challenges revealed by plants.
Proc Biol Sci. 2010 Oct 22;277(1697):3055-64. doi: 10.1098/rspb.2010.0707. Epub 2010 Jun 23.
9
Exact results for the evolution of stochastic switching in variable asymmetric environments.
Genetics. 2010 Apr;184(4):1113-9. doi: 10.1534/genetics.109.113431. Epub 2010 Jan 25.
10
Stress-induced DNA methylation changes and their heritability in asexual dandelions.
New Phytol. 2010 Mar;185(4):1108-18. doi: 10.1111/j.1469-8137.2009.03121.x. Epub 2009 Dec 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验