Zhan Hong, Stanciauskas Ramunas, Stigloher Christian, Keomanee-Dizon Kevin, Jospin Maelle, Bessereau Jean-Louis, Pinaud Fabien
University Claude Bernard Lyon 1, CGphiMC UMR CNRS 5534, Villeurbanne 69622, France.
Department of Biological Sciences, Dana and David Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California 90089, USA.
Nat Commun. 2014 Sep 18;5:4974. doi: 10.1038/ncomms5974.
Single-molecule (SM) fluorescence microscopy allows the imaging of biomolecules in cultured cells with a precision of a few nanometres but has yet to be implemented in living adult animals. Here we used split-GFP (green fluorescent protein) fusions and complementation-activated light microscopy (CALM) for subresolution imaging of individual membrane proteins in live Caenorhabditis elegans (C. elegans). In vivo tissue-specific SM tracking of transmembrane CD4 and voltage-dependent Ca(2+) channels (VDCC) was achieved with a precision of 30 nm within neuromuscular synapses and at the surface of muscle cells in normal and dystrophin-mutant worms. Through diffusion analyses, we reveal that dystrophin is involved in modulating the confinement of VDCC within sarcolemmal membrane nanodomains in response to varying tonus of C. elegans body-wall muscles. CALM expands the applications of SM imaging techniques beyond the petri dish and opens the possibility to explore the molecular basis of homeostatic and pathological cellular processes with subresolution precision, directly in live animals.
单分子(SM)荧光显微镜能够以几纳米的精度对培养细胞中的生物分子进行成像,但尚未在成年活体动物中实现。在此,我们利用分裂绿色荧光蛋白(GFP)融合蛋白和互补激活光学显微镜(CALM)对线虫活体内的单个膜蛋白进行亚分辨率成像。通过体内组织特异性单分子追踪,在正常和肌营养不良蛋白突变的线虫的神经肌肉突触内以及肌肉细胞表面,实现了对跨膜CD4和电压依赖性钙通道(VDCC)30纳米精度的追踪。通过扩散分析,我们发现肌营养不良蛋白参与调节VDCC在肌膜纳米结构域内的受限状态,以响应线虫体壁肌肉不同的紧张度。CALM将单分子成像技术的应用扩展到培养皿之外,开启了直接在活体动物中以亚分辨率精度探索稳态和病理细胞过程分子基础的可能性。