Institute of Cytology of Russian Academy of Sciences, St. Petersburg, Russia.
Biotechniques. 2011 Nov;51(5):313-4, 316, 318 passim. doi: 10.2144/000113765.
The diverse biochemical and photophysical properties of fluorescent proteins (FPs) have enabled the generation of a growing palette of colors, providing unique opportunities for their use in a variety of modern biology applications. Modulation of these FP characteristics is achieved through diversity in both the structure of the chromophore as well as the contacts between the chromophore and the surrounding protein barrel. Here we review our current knowledge of blue, green, and red chromophore formation in permanently emitting FPs, photoactivatable FPs, and fluorescent timers. Progress in understanding the interplay between FP structure and function has allowed the engineering of FPs with many desirable features, and enabled recent advances in microscopy techniques such as super-resolution imaging of single molecules, imaging of protein dynamics, photochromic FRET, deep-tissue imaging, and multicolor two-photon microscopy in live animals.
荧光蛋白(FPs)的多样化生化和光物理特性使其能够产生越来越多的颜色,为它们在各种现代生物学应用中提供了独特的机会。通过改变生色团的结构以及生色团与周围蛋白桶之间的相互作用,可以实现对这些 FP 特性的调节。在这里,我们综述了永久性发射 FP、光激活 FP 和荧光标记物中蓝色、绿色和红色生色团形成的最新研究进展。对 FP 结构和功能相互作用的理解进展,使得可以对具有许多理想特性的 FP 进行工程设计,并在活细胞中单分子超分辨率成像、蛋白质动力学成像、光致变色 FRET、深层组织成像和双色双光子显微镜等显微镜技术方面取得了最新进展。