Suppr超能文献

神经元细胞类型与连接性:来自视网膜的经验教训。

Neuronal cell types and connectivity: lessons from the retina.

作者信息

Seung H Sebastian, Sümbül Uygar

机构信息

Princeton Neuroscience Institute and Computer Science Department, Princeton University, Princeton, NJ 08544, USA.

Grossman Center for the Statistics of Mind and Department of Statistics, Columbia University, New York, NY 10027, USA.

出版信息

Neuron. 2014 Sep 17;83(6):1262-72. doi: 10.1016/j.neuron.2014.08.054.

Abstract

We describe recent progress toward defining neuronal cell types in the mouse retina and attempt to extract lessons that may be generally useful in the mammalian brain. Achieving a comprehensive catalog of retinal cell types now appears within reach, because researchers have achieved consensus concerning two fundamental challenges. The first is accuracy-defining pure cell types rather than settling for neuronal classes that are mixtures of types. The second is completeness-developing methods guaranteed to eventually identify all cell types, as well as criteria for determining when all types have been found. Case studies illustrate how these two challenges are handled by combining state-of-the-art molecular, anatomical, and physiological techniques. Progress is also being made in observing and modeling connectivity between cell types. Scaling up to larger brain regions, such as the cortex, will require not only technical advances but also careful consideration of the challenges of accuracy and completeness.

摘要

我们描述了在定义小鼠视网膜神经元细胞类型方面的最新进展,并试图从中汲取可能对哺乳动物大脑普遍有用的经验教训。现在看来,实现视网膜细胞类型的全面目录已指日可待,因为研究人员已就两个基本挑战达成共识。第一个挑战是准确性——定义纯细胞类型,而不是满足于由多种类型混合而成的神经元类别。第二个挑战是完整性——开发能够最终识别所有细胞类型的方法,以及确定何时已找到所有类型的标准。案例研究说明了如何通过结合最先进的分子、解剖和生理技术来应对这两个挑战。在观察和模拟细胞类型之间的连接方面也取得了进展。扩大到更大的脑区,如皮层,不仅需要技术进步,还需要仔细考虑准确性和完整性方面的挑战。

相似文献

1
Neuronal cell types and connectivity: lessons from the retina.
Neuron. 2014 Sep 17;83(6):1262-72. doi: 10.1016/j.neuron.2014.08.054.
2
New Optical Tools to Study Neural Circuit Assembly in the Retina.
Front Neural Circuits. 2020 Aug 6;14:44. doi: 10.3389/fncir.2020.00044. eCollection 2020.
3
Neuronal cell types.
Curr Biol. 2004 Jul 13;14(13):R497-500. doi: 10.1016/j.cub.2004.06.035.
4
Confronting complexity: strategies for understanding the microcircuitry of the retina.
Annu Rev Neurosci. 2000;23:249-84. doi: 10.1146/annurev.neuro.23.1.249.
6
Characterization of green fluorescent protein-expressing retinal cells in CD 44-transgenic mice.
Neuroscience. 2007 Feb 9;144(3):1087-93. doi: 10.1016/j.neuroscience.2006.09.061. Epub 2006 Dec 8.
7
Single-cell profiling of developing and mature retinal neurons.
J Vis Exp. 2012 Apr 19(62):3824. doi: 10.3791/3824.
8
Genetically targeted binary labeling of retinal neurons.
J Neurosci. 2014 Jun 4;34(23):7845-61. doi: 10.1523/JNEUROSCI.2960-13.2014.
9
A genetic and computational approach to structurally classify neuronal types.
Nat Commun. 2014 Mar 24;5:3512. doi: 10.1038/ncomms4512.
10
Evidence for a columnar organization of cones, Müller cells, and neurons in the retina of a cichlid fish.
Neuroscience. 2007 Feb 9;144(3):1004-14. doi: 10.1016/j.neuroscience.2006.10.029. Epub 2006 Dec 6.

引用本文的文献

1
The structure, function, and distribution of gap junctions in the retina: Life cycle in health and disease.
J Cell Commun Signal. 2025 Sep 3;19(3):e70036. doi: 10.1002/ccs3.70036. eCollection 2025 Sep.
2
Inhibitory cell type heterogeneity in a spatially structured mean-field model of V1.
bioRxiv. 2025 Mar 13:2025.03.13.643046. doi: 10.1101/2025.03.13.643046.
3
Connectome-driven neural inventory of a complete visual system.
Nature. 2025 Mar 26. doi: 10.1038/s41586-025-08746-0.
5
Neuronal parts list and wiring diagram for a visual system.
Nature. 2024 Oct;634(8032):166-180. doi: 10.1038/s41586-024-07981-1. Epub 2024 Oct 2.
7
Connectome-driven neural inventory of a complete visual system.
bioRxiv. 2024 Jun 1:2024.04.16.589741. doi: 10.1101/2024.04.16.589741.
8
Heterogeneity of synaptic connectivity in the fly visual system.
Nat Commun. 2024 Feb 21;15(1):1570. doi: 10.1038/s41467-024-45971-z.
9
Population encoding of stimulus features along the visual hierarchy.
Proc Natl Acad Sci U S A. 2024 Jan 23;121(4):e2317773121. doi: 10.1073/pnas.2317773121. Epub 2024 Jan 16.

本文引用的文献

1
Automatic discovery of cell types and microcircuitry from neural connectomics.
Elife. 2015 Apr 30;4:e04250. doi: 10.7554/eLife.04250.
2
Retinal bipolar cells: elementary building blocks of vision.
Nat Rev Neurosci. 2014 Aug;15(8):507-19. doi: 10.1038/nrn3783.
3
Type II cadherins guide assembly of a direction-selective retinal circuit.
Cell. 2014 Aug 14;158(4):793-807. doi: 10.1016/j.cell.2014.06.047.
4
Genetically targeted binary labeling of retinal neurons.
J Neurosci. 2014 Jun 4;34(23):7845-61. doi: 10.1523/JNEUROSCI.2960-13.2014.
5
Space-time wiring specificity supports direction selectivity in the retina.
Nature. 2014 May 15;509(7500):331-336. doi: 10.1038/nature13240. Epub 2014 May 4.
6
A genetic and computational approach to structurally classify neuronal types.
Nat Commun. 2014 Mar 24;5:3512. doi: 10.1038/ncomms4512.
7
Untangling GABAergic wiring in the cortical microcircuit.
Curr Opin Neurobiol. 2014 Jun;26:7-14. doi: 10.1016/j.conb.2013.10.003. Epub 2013 Nov 16.
8
A dedicated circuit links direction-selective retinal ganglion cells to the primary visual cortex.
Nature. 2014 Mar 20;507(7492):358-61. doi: 10.1038/nature12989. Epub 2014 Feb 26.
9
Visual space is represented by nonmatching topographies of distinct mouse retinal ganglion cell types.
Curr Biol. 2014 Feb 3;24(3):310-5. doi: 10.1016/j.cub.2013.12.020. Epub 2014 Jan 16.
10
On and off retinal circuit assembly by divergent molecular mechanisms.
Science. 2013 Nov 1;342(6158):1241974. doi: 10.1126/science.1241974.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验