Howard Lauren Eileen, Levetin Estelle
Department of Biological Sciences, University of Tulsa, Tulsa, Oklahoma.
Department of Biological Sciences, University of Tulsa, Tulsa, Oklahoma.
Ann Allergy Asthma Immunol. 2014 Dec;113(6):641-6. doi: 10.1016/j.anai.2014.08.019. Epub 2014 Sep 17.
Ambrosia pollen is an important aeroallergen in North America; the ability to predict daily pollen levels may provide an important benefit for sensitive individuals.
To analyze the long-term Ambrosia pollen counts and develop a forecasting model to predict the next day's pollen concentration.
Airborne pollen has been collected since December 1986 with a Burkard spore trap at the University of Tulsa. Summary statistics and season metrics were calculated for the 27 years of data. Concentration and previous-day meteorologic data from 1987 to 2011 were used to develop a multiple regression model to predict pollen levels for the following day. Model output was compared to 2012 and 2013 ragweed pollen data.
The Tulsa ragweed season extends from the middle of August to late October. The mean start date is August 22, the mean peak date is September 10, and the mean end date is October 20. The mean cumulative season total is 11,599 pollen/m(3), and the mean daily concentration is 197 pollen/m(3). Previous-day meteorologic and phenologic data were positively related to pollen concentration (P < .001). Precipitation was modeled as a dichotomous variable. The final model included minimum temperature, dichotomous precipitation, dew point, and phenology variable (R = 0.7146, P < .001). Analysis of the model's accuracy revealed that the model was highly representative of the 2012 and 2013 seasons (R = 0.680, P < .001).
Multiple regression models may be useful in explaining the variability of Ambrosia pollen levels. Further testing of the modeling parameters in different geographical areas is needed.
豚草花粉是北美的一种重要气传变应原;预测每日花粉水平的能力可能会给敏感个体带来重要益处。
分析长期的豚草花粉计数,并开发一种预测模型以预测次日的花粉浓度。
自1986年12月起,在塔尔萨大学使用伯卡德孢子捕捉器收集空气中的花粉。对27年的数据计算了汇总统计量和季节指标。使用1987年至2011年的浓度和前一日气象数据建立多元回归模型,以预测次日的花粉水平。将模型输出与2012年和2013年的豚草花粉数据进行比较。
塔尔萨豚草季节从8月中旬持续到10月下旬。平均开始日期为8月22日,平均峰值日期为9月10日,平均结束日期为10月20日。季节累计总量平均为11,599粒花粉/立方米,平均每日浓度为197粒花粉/立方米。前一日气象和物候数据与花粉浓度呈正相关(P <.001)。降水被建模为二分变量。最终模型包括最低温度、二分降水、露点和物候变量(R = 0.7146,P <.001)。对模型准确性的分析表明,该模型对2012年和2013年季节具有高度代表性(R = 0.680,P <.001)。
多元回归模型可能有助于解释豚草花粉水平的变异性。需要在不同地理区域进一步测试建模参数。