Dalla Lana Felipe, Ziegelmann Patricia K, de H N Maia Aline, Godoy Cláudia V, Del Ponte Emerson M
Phytopathology. 2015 Mar;105(3):307-15. doi: 10.1094/PHYTO-06-14-0157-R.
Meta-analytic models were used to summarize and assess the heterogeneity in the relationship between soybean yield (Y, kg/ha) and rust severity (S, %) data from uniform fungicide trials (study, k) conducted over nine growing seasons in Brazil. For each selected study, correlation (k=231) and regression (k=210) analysis for the Y-S relationship were conducted and three effect-sizes were obtained from these analysis: Fisher's transformation of the Pearson's correlation coefficient (Zr) and the intercept (β0) and slope (β1) coefficients. These effect-sizes were summarized through random-effect and mixed-effect models, with the latter incorporating study-specific categorical moderators such as disease onset time (DOT) (<R1 or ≥R1 reproductive crop stage), disease pressure (DP) (high=>70%, moderate=>40 and ≤70%, and low=≤40% S the check treatment), and growing season. The overall mean for r- (back-transformed Z-r) was -0.61, based on the random-effects model. DOT and DP explained 14 and 25%, respectively, of the variability in Z-r. Stronger associations (r-=-0.87 and -0.90) were estimated by mixed-effects models for the Zr data from studies with highest DP (DP>70%) and earliest rust onset (DOT<R1), respectively. Overall means (based on a random-effect model) for the regression coefficients β-0 and β-1 were 2,977 and 18 kg/ha/%(-1), respectively. In other words, S as low as 3% would reduce 60 kg/ha for an expected Y of 3,000 kg/ha. In relative terms, each unitary percent increase in S would lead to a 0.6 percentage point (pp) reduction in Y. The three categorical moderator variables explained some (5 to 10%) of the heterogeneity in β-1 but not in β-0 The estimated relative reduction in Y was 0.41 to 0.79 pp/%(-1) across seasons. Highest relative yield reductions (>0.73 pp/%(-1)) were estimated for studies with DOT
采用荟萃分析模型,对巴西九个生长季节进行的统一杀菌剂试验(研究,k)中大豆产量(Y,kg/ha)与锈病严重程度(S,%)数据之间关系的异质性进行总结和评估。对于每项选定的研究,对Y-S关系进行了相关性分析(k = 231)和回归分析(k = 210),并从这些分析中获得了三个效应量:皮尔逊相关系数的费舍尔变换(Zr)以及截距(β0)和斜率(β1)系数。通过随机效应模型和混合效应模型对这些效应量进行总结,后者纳入了特定研究的分类调节变量,如发病时间(DOT)(<R1或≥R1生殖作物阶段)、病害压力(DP)(高=>70%、中=>40%且≤70%、低=≤40% S对照处理)以及生长季节。基于随机效应模型,r-(反变换后的Zr)的总体均值为-0.61。DOT和DP分别解释了Zr变异性的14%和25%。对于DP最高(DP>70%)和锈病发病最早(DOT<R1)的研究中的Zr数据,混合效应模型估计的关联更强(r-=-0.87和-0.90)。回归系数β-0和β-1的总体均值(基于随机效应模型)分别为2977和18 kg/ha/%(-1)。换句话说,对于预期产量为3000 kg/ha的情况,低至3%的S会使产量降低60 kg/ha。相对而言,S每增加一个百分点,Y将降低0.6个百分点(pp)。这三个分类调节变量解释了β-1中部分(5%至10%)的异质性,但未解释β-0中的异质性。整个季节中Y的估计相对降低幅度为0.41至0.79 pp/%(-1)。对于DOT<R1且DP>70%的研究,估计的相对产量降低幅度最高(>0.73 pp/%(-1));后者可能是由于DP较低时杀菌剂效果较好,从而导致杀菌剂处理地块和未处理地块之间的产量差异更大。临界点荟萃分析模型可以基于病害严重程度的综合度量提供产量损失的一般估计。它们对于不同DOT和有利于病害流行发展的天气情况下的作物损失评估和经济分析也可能有用。