United States Department of Agriculture, Agricultural Research Service, Poultry Production and Product Safety Research Unit, Fayetteville, Arkansas, United States of America.
Department of Plant Sciences, University of Tennessee, Knoxville, Tennessee, United States of America.
PLoS One. 2018 Jul 10;13(7):e0200274. doi: 10.1371/journal.pone.0200274. eCollection 2018.
Ecological research suggests increased diversity may improve ecosystem services, as well as yield stability; however, such theories are sometimes disproven by agronomic research, particularly at higher diversity levels. We conducted a meta-analysis on 2,753 studies in 48 articles published over the last 53 years to test: if biological N2 fixation (BNF) supplies adequate nitrogen (N) for plant growth relative to synthetic fertilizers; how crop physiological traits affect legume-grass symbiosis; and, how cultural practices affect BNF over a range of soils and climates overtime (in polycultures versus sole grasslands). Globally, net primary productivity (NPP; total aboveground production response of grass and legume in higher-diversity treatments) increased 44% via legume associations relative to sole grass controls (including both with and without N fertilizer). Several moderating variables affected NPP including: (i) plant photosynthetic pathway (mixtures of C3 grasses resulted in a 57% increase in NPP, whereas mixtures of C4 grasses resulted in a 31% increase; similarly cool-season legumes increased NPP 52% compared to a 27% increase for warm-season legumes relative to grasslands without diversity); (ii) legume life cycle [NPP response for perennial legume mixtures was 50% greater than sole grass controls, followed by a 28% increase for biennial, and a 0% increase for annual legumes)]; and, (iii) species richness (one leguminous species in a grassland agroecosystem resulted in 52% increase in NPP, whereas >2 legumes resulted in only 6% increases). Temporal and spatial effect sizes also influenced facilitation, considering facilitation was greatest (114% change) in Mediterranean climates followed by oceanic (84%), and tropical savanna (65%) environments; conversely, semiarid and subarctic systems had lowest Rhizobium-induced changes (5 and 0% change, respectively). Facilitation of grass production by legumes was also affected by soil texture. For example, a 122% NPP increase was observed in silt clay soils compared to 14% for silt loam soils. Niche complementarity effects were greatest prior to 1971 (61% change), compared to recent studies (2011-2016; -7% change), likely owing to reduced global sulfur deposition and increased ambient temperatures overtime. These historical trends suggest potential for legume intercrops to displace inorganic-N fertilizer and sustainably intensify global NPP. Results herein provide a framework for ecologists and agronomists to improve crop diversification systems, refine research goals, and heighten BNF capacities in agro-grasslands.
生态研究表明,增加多样性可能会改善生态系统服务,提高稳定性;然而,这些理论有时会被农业研究推翻,尤其是在更高的多样性水平下。我们对过去 53 年发表的 48 篇文章中的 2753 项研究进行了荟萃分析,以检验以下问题:生物固氮(BNF)相对于合成肥料是否为植物生长提供了足够的氮(N);作物生理特性如何影响豆科-禾本科共生;以及,随着时间的推移,文化实践如何在多种土壤和气候条件下影响 BNF(在混交种植与单一草地相比)。在全球范围内,与单一草地对照相比,豆科植物的共生使草地和豆科植物的净初级生产力(NPP;高多样性处理中地上总生产力的响应)增加了 44%(包括有和没有氮肥的情况)。有几个调节变量影响了 NPP,包括:(i)植物光合作用途径(C3 草的混合物导致 NPP 增加 57%,而 C4 草的混合物导致 NPP 增加 31%;同样,与无多样性的草地相比,冷季豆科植物的 NPP 增加了 52%,而暖季豆科植物的 NPP 仅增加了 27%);(ii)豆科植物的生命周期[多年生豆科植物混合物的 NPP 响应比单一草地对照高 50%,其次是两年生的,一年生的则没有增加];和,(iii)物种丰富度(在草地农业生态系统中添加一种豆科植物会使 NPP 增加 52%,而添加两种或更多种豆科植物只会使 NPP 增加 6%)。时间和空间的效应大小也影响了促进作用,因为在以下环境中促进作用最大(地中海气候为 114%,海洋性气候为 84%,热带稀树草原气候为 65%);相反,半干旱和亚北极系统中的根瘤菌诱导变化最小(分别为 5%和 0%的变化)。豆科植物对草地生产的促进作用也受到土壤质地的影响。例如,与粉壤土相比,在粘壤土中观察到 122%的 NPP 增加。在 1971 年之前(61%的变化),生态位互补效应最大,而在最近的研究(2011-2016 年;-7%的变化)中则较小,这可能是由于全球硫沉降减少和环境温度升高所致。这些历史趋势表明,豆科作物间作可能会取代无机氮肥料,并可持续地提高全球 NPP。本文的结果为生态学家和农学家提供了一个框架,以改善作物多样化系统,完善研究目标,并提高农业草地中的 BNF 能力。