Electrical and Computer Engineering Department and Center for Autonomous Solar Power (CASP), Binghamton University, State University of New York, New York 13902, USA.
Nanoscale Res Lett. 2014 Aug 31;9(1):453. doi: 10.1186/1556-276X-9-453. eCollection 2014.
Nanocomposite electrodes having three-dimensional (3-D) nanoscale architecture comprising of vertically aligned ZnO nanorod array core-polypyrrole (PPy) conducting polymer sheath and the vertical PPy nanotube arrays have been investigated for supercapacitor energy storage. The electrodes in the ZnO nanorod core-PPy sheath structure are formed by preferential nucleation and deposition of PPy layer over hydrothermally synthesized vertical ZnO nanorod array by controlled pulsed current electropolymerization of pyrrole monomer under surfactant action. The vertical PPy nanotube arrays of different tube diameter are created by selective etching of the ZnO nanorod core in ammonia solution for different periods. Cyclic voltammetry studies show high areal-specific capacitance approximately 240 mF.cm(-2) for open pore and approximately 180 mF.cm(-2) for narrow 30-to-36-nm diameter PPy nanotube arrays attributed to intensive faradic processes arising from enhanced access of electrolyte ions through nanotube interior and exterior. Impedance spectroscopy studies show that capacitive response extends over larger frequency domain in electrodes with PPy nanotube structure. Simulation of Nyquist plots by electrical equivalent circuit modeling establishes that 3-D nanostructure is better represented by constant phase element which accounts for the inhomogeneous electrochemical redox processes. Charge-discharge studies at different current densities establish that kinetics of the redox process in PPy nanotube electrode is due to the limitation on electron transport rather than the diffusive process of electrolyte ions. The PPy nanotube electrodes show deep discharge capability with high coulomb efficiency and long-term charge-discharge cyclic studies show nondegrading performance of the specific areal capacitance tested for 5,000 cycles.
具有三维(3-D)纳米结构的纳米复合电极,包括垂直排列的 ZnO 纳米棒阵列核心-聚吡咯(PPy)导电聚合物鞘和垂直的 PPy 纳米管阵列,已被研究用于超级电容器储能。在 ZnO 纳米棒核-PPy 鞘结构中,电极是通过在表面活性剂作用下,通过控制脉冲电流电聚合吡咯单体,在水热合成的垂直 ZnO 纳米棒阵列上优先成核和沉积 PPy 层形成的。通过在氨溶液中选择性蚀刻 ZnO 纳米棒核,可以在不同的周期内形成不同管径的垂直 PPy 纳米管阵列。循环伏安法研究表明,具有开放孔的电极具有高面积比比电容,约为 240 mF.cm(-2),而具有 30-36nm 窄直径的 PPy 纳米管阵列的电极具有约 180 mF.cm(-2),这归因于通过纳米管内部和外部增强电解质离子的可达性而产生的强烈法拉第过程。阻抗谱研究表明,在具有 PPy 纳米管结构的电极中,电容响应扩展到更大的频率域。通过电等效电路模型模拟奈奎斯特图表明,3-D 纳米结构由恒相元件更好地表示,该元件说明了不均匀的电化学氧化还原过程。在不同电流密度下的充放电研究表明,PPy 纳米管电极中氧化还原过程的动力学是由于电子传输的限制而不是电解质离子的扩散过程。PPy 纳米管电极具有深放电能力,库仑效率高,长期充放电循环研究表明,在 5000 次循环测试中,比面积电容的性能没有下降。