Suppr超能文献

数据分析技术:一种累积暴露评估工具。

Data analysis techniques: a tool for cumulative exposure assessment.

作者信息

Lalloué Benoît, Monnez Jean-Marie, Padilla Cindy, Kihal Wahida, Zmirou-Navier Denis, Deguen Séverine

机构信息

1] EHESP Rennes, Sorbonne Paris Cité, Rennes, France [2] Inserm, UMR1085-IRSET (Institut de Recherche sur la Santé L'environnement et le Travail), Rennes, France [3] Lorraine University, Institut Elie Cartan de Lorraine, CNRS UMR 7502, Nancy, France [4] Lorraine University, INRIA, CNRS UMR7502, BIGS (INRIA Nancy - Grand Est/IECL), Nancy, France.

1] Lorraine University, Institut Elie Cartan de Lorraine, CNRS UMR 7502, Nancy, France [2] Lorraine University, INRIA, CNRS UMR7502, BIGS (INRIA Nancy - Grand Est/IECL), Nancy, France.

出版信息

J Expo Sci Environ Epidemiol. 2015 Mar-Apr;25(2):222-30. doi: 10.1038/jes.2014.66. Epub 2014 Sep 24.

Abstract

Everyone is subject to environmental exposures from various sources, with negative health impacts (air, water and soil contamination, noise, etc.or with positive effects (e.g. green space). Studies considering such complex environmental settings in a global manner are rare. We propose to use statistical factor and cluster analyses to create a composite exposure index with a data-driven approach, in view to assess the environmental burden experienced by populations. We illustrate this approach in a large French metropolitan area. The study was carried out in the Great Lyon area (France, 1.2 M inhabitants) at the census Block Group (BG) scale. We used as environmental indicators ambient air NO2 annual concentrations, noise levels and proximity to green spaces, to industrial plants, to polluted sites and to road traffic. They were synthesized using Multiple Factor Analysis (MFA), a data-driven technique without a priori modeling, followed by a Hierarchical Clustering to create BG classes. The first components of the MFA explained, respectively, 30, 14, 11 and 9% of the total variance. Clustering in five classes group: (1) a particular type of large BGs without population; (2) BGs of green residential areas, with less negative exposures than average; (3) BGs of residential areas near midtown; (4) BGs close to industries; and (5) midtown urban BGs, with higher negative exposures than average and less green spaces. Other numbers of classes were tested in order to assess a variety of clustering. We present an approach using statistical factor and cluster analyses techniques, which seem overlooked to assess cumulative exposure in complex environmental settings. Although it cannot be applied directly for risk or health effect assessment, the resulting index can help to identify hot spots of cumulative exposure, to prioritize urban policies or to compare the environmental burden across study areas in an epidemiological framework.

摘要

每个人都受到来自各种来源的环境暴露影响,这些暴露可能对健康产生负面影响(如空气、水和土壤污染、噪音等),也可能产生积极影响(如绿地)。以全球视角考虑这种复杂环境状况的研究很少见。我们建议采用统计因子分析和聚类分析,通过数据驱动的方法创建一个综合暴露指数,以评估人群所承受的环境负担。我们在法国一个大型都市地区展示了这种方法。该研究在大里昂地区(法国,120万居民)以普查街区组(BG)规模进行。我们将环境空气二氧化氮年浓度、噪音水平以及与绿地、工业厂房、污染场地和道路交通的距离用作环境指标。通过多因素分析(MFA)对这些指标进行综合,MFA是一种无需先验建模的数据驱动技术,随后进行层次聚类以创建BG类别。MFA的前几个成分分别解释了总方差的30%、14%、11%和9%。聚类分为五类:(1)一种特定类型的无人居住的大型BG;(2)绿色住宅区的BG,负面暴露低于平均水平;(3)市中心附近住宅区的BG;(4)靠近工业区的BG;(5)市中心的城市BG,负面暴露高于平均水平且绿地较少。为了评估不同的聚类情况,还测试了其他类别的数量。我们提出了一种使用统计因子分析和聚类分析技术的方法,在评估复杂环境中的累积暴露时,这种方法似乎被忽视了。尽管它不能直接用于风险或健康影响评估,但所得指数有助于识别累积暴露的热点区域,确定城市政策的优先次序,或在流行病学框架内比较不同研究区域的环境负担。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验