Park Sunyoung, Serences John T
Department of Psychology, University of California, San Diego, La Jolla, California, United States of America.
Neurosciences Graduate Program, University of California, San Diego, La Jolla, California, United States of America.
PLoS Comput Biol. 2025 Aug 12;21(8):e1013396. doi: 10.1371/journal.pcbi.1013396. eCollection 2025 Aug.
Top-down feedback from prefrontal cortex (PFC) can enhance the gain of feature selective neurons in early sensory areas that are tuned to behaviorally relevant stimuli (termed feature-based attention). Importantly, feature-based attention can even modulate the gain of neurons that do not respond directly to the spatial location of the relevant stimulus, a phenomenon that is thought to globally prime sensitivity to detect relevant features - irrespective of their location - during visual search. However, the neurons in PFC that are thought to provide top-down feedback typically have high-dimensional tuning for multiple features, so it is unclear how feedback selectively modulates responses in neurons tuned to a relevant stimulus without incidentally causing interference by co-modulating neurons tuned to irrelevant features. To investigate this issue, we adapted a spiking neural network model with a first 'sensory' layer composed of neurons selective for single features. Neurons in a second 'control' layer formed random and reciprocal connections with different sensory neurons, giving rise to PFC-like high-dimensional feature tuning. Stimulating second layer neurons that responded robustly to a relevant stimulus led to corresponding gain modulations in sensory neurons that were directly driven by a relevant stimulus. Importantly, no spurious stimulus-like representations arose in unstimulated sensory neurons - despite high-dimensional tuning in second layer neurons - because the random connections averaged out feedback targeted on irrelevant features. Next, we show that subtly increasing the probability that similarly tuned sensory neurons converge on the same second layer neurons can yield most of the noise-cancelling benefits of completely random connections while simultaneously producing spatially global feature-selective modulations in unstimulated sensory neurons. Collectively, these results suggest that a delicate balance between randomness and structure can support top-down feedback signals that globally enhance sensory neurons tuned to relevant features, without leading to spurious stimulus representations that might interfere with perceptual processing.
前额叶皮层(PFC)的自上而下反馈可以增强早期感觉区域中对行为相关刺激进行调谐的特征选择性神经元的增益(称为基于特征的注意)。重要的是,基于特征的注意甚至可以调节那些不直接对相关刺激的空间位置做出反应的神经元的增益,这一现象被认为在视觉搜索过程中全局地提高对相关特征的敏感度,而不管其位置如何。然而,被认为提供自上而下反馈的PFC中的神经元通常对多个特征具有高维调谐,因此尚不清楚反馈如何选择性地调节对相关刺激进行调谐的神经元的反应,而不会因共同调节对不相关特征进行调谐的神经元而偶然导致干扰。为了研究这个问题,我们采用了一种尖峰神经网络模型,其第一个“感觉”层由对单个特征具有选择性的神经元组成。第二个“控制”层中的神经元与不同的感觉神经元形成随机且相互的连接,从而产生类似PFC的高维特征调谐。刺激对相关刺激有强烈反应的第二层神经元会导致由相关刺激直接驱动的感觉神经元中相应的增益调制。重要的是,在未受刺激的感觉神经元中不会出现虚假的刺激样表征——尽管第二层神经元具有高维调谐——因为随机连接平均了针对不相关特征的反馈。接下来,我们表明,微妙地增加调谐相似的感觉神经元汇聚到同一第二层神经元上的概率,可以产生完全随机连接的大部分噪声消除益处,同时在未受刺激的感觉神经元中产生空间全局特征选择性调制。总的来说,这些结果表明,随机性和结构之间的微妙平衡可以支持自上而下的反馈信号,这些信号全局地增强对相关特征进行调谐的感觉神经元,而不会导致可能干扰感知处理的虚假刺激表征。