Max Planck Institute for Solid State Research , Heisenbergstrasse 1, 70569 Stuttgart, Germany.
Nano Lett. 2014 Nov 12;14(11):6533-8. doi: 10.1021/nl503131s. Epub 2014 Oct 2.
TiO2 anatase plays a central role in energy and environmental research. A major bottleneck toward developing artificial photosynthesis with TiO2 is that it only absorbs ultraviolet light, owing to its large bandgap of 3.2 eV. If one could reduce the bandgap of anatase to the visible region, TiO2-based photocatalysis could become a competitive clean energy source. Here, using scanning tunneling microscopy and spectroscopy in conjunction with density functional theory calculations, we report the discovery of a highly reactive titanium-terminated anatase surface with a reduced bandgap of less than 2 eV, stretching into the red portion of the solar spectrum. By tuning the surface preparation conditions, we can reversibly switch between the standard anatase surface and the newly discovered low bandgap surface phase. The identification of a TiO2 anatase surface phase with a bandgap in the visible and high chemical reactivity has important implications for solar energy conversion, photocatalysis, and artificial photosynthesis.
锐钛矿型二氧化钛在能源和环境研究中起着核心作用。将二氧化钛用于人工光合作用的一个主要瓶颈是,由于其 3.2eV 的大带隙,它只能吸收紫外线。如果能将锐钛矿的带隙降低到可见光区域,基于二氧化钛的光催化作用就可能成为一种有竞争力的清洁能源。在这里,我们使用扫描隧道显微镜和光谱学结合密度泛函理论计算,报告了具有小于 2eV 的带隙的高度反应性的钛终止锐钛矿表面的发现,其延伸到太阳光谱的红色部分。通过调整表面制备条件,我们可以在标准锐钛矿表面和新发现的低带隙表面相之间进行可逆切换。具有可见光带隙和高化学反应性的 TiO2 锐钛矿表面相的鉴定对太阳能转换、光催化和人工光合作用具有重要意义。