Suppr超能文献

通过原子层沉积生长的TiO薄膜中纳米腔介导的铒的珀塞尔增强效应

Nanocavity-Mediated Purcell Enhancement of Er in TiO Thin Films Grown via Atomic Layer Deposition.

作者信息

Ji Cheng, Solomon Michael T, Grant Gregory D, Tanaka Koichi, Hua Muchuan, Wen Jianguo, Seth Sagar Kumar, Horn Connor P, Masiulionis Ignas, Singh Manish Kumar, Sullivan Sean E, Heremans F Joseph, Awschalom David D, Guha Supratik, Dibos Alan M

机构信息

Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States.

Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States.

出版信息

ACS Nano. 2024 Apr 9;18(14):9929-9941. doi: 10.1021/acsnano.3c09878. Epub 2024 Mar 27.

Abstract

The use of trivalent erbium (Er), typically embedded as an atomic defect in the solid-state, has widespread adoption as a dopant in telecommunication devices and shows promise as a spin-based quantum memory for quantum communication. In particular, its natural telecom C-band optical transition and spin-photon interface make it an ideal candidate for integration into existing optical fiber networks without the need for quantum frequency conversion. However, successful scaling requires a host material with few intrinsic nuclear spins, compatibility with semiconductor foundry processes, and straightforward integration with silicon photonics. Here, we present Er-doped titanium dioxide (TiO) thin film growth on silicon substrates using a foundry-scalable atomic layer deposition process with a wide range of doping controls over the Er concentration. Even though the as-grown films are amorphous after oxygen annealing, they exhibit relatively large crystalline grains, and the embedded Er ions exhibit the characteristic optical emission spectrum from anatase TiO. Critically, this growth and annealing process maintains the low surface roughness required for nanophotonic integration. Finally, we interface Er ensembles with high quality factor Si nanophotonic cavities via evanescent coupling and demonstrate a large Purcell enhancement (≈300) of their optical lifetime. Our findings demonstrate a low-temperature, nondestructive, and substrate-independent process for integrating Er-doped materials with silicon photonics. At high doping densities this platform can enable integrated photonic components such as on-chip amplifiers and lasers, while dilute concentrations can realize single ion quantum memories.

摘要

三价铒(Er)通常作为原子缺陷嵌入固态材料中,在电信设备中作为掺杂剂已被广泛采用,并有望成为用于量子通信的基于自旋的量子存储器。特别是,其天然的电信C波段光学跃迁和自旋 - 光子界面使其成为集成到现有光纤网络中的理想候选者,而无需量子频率转换。然而,要成功扩大规模,需要一种本征核自旋少的主体材料,与半导体制造工艺兼容,并能与硅光子学直接集成。在此,我们展示了使用可用于制造的原子层沉积工艺在硅衬底上生长掺铒二氧化钛(TiO₂)薄膜,该工艺可对铒浓度进行广泛的掺杂控制。尽管经氧气退火后的生长薄膜是非晶态的,但它们呈现出相对较大的晶粒,并且嵌入的铒离子呈现出锐钛矿TiO₂的特征光发射光谱。至关重要的是,这种生长和退火过程保持了纳米光子集成所需的低表面粗糙度。最后,我们通过倏逝耦合将铒系综与高品质因子的硅纳米光子腔进行耦合,并证明其光学寿命有大幅的珀塞尔增强(≈300)。我们的研究结果展示了一种用于将掺铒材料与硅光子学集成的低温、无损且与衬底无关的工艺。在高掺杂密度下,该平台可实现诸如片上放大器和激光器等集成光子组件,而在低浓度下则可实现单离子量子存储器。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e81e/11008365/acc6a2b0118d/nn3c09878_0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验