Suppr超能文献

细菌生物矿化过程中的自我保护策略——以水锌矿为例及对细菌化石形成的启示

Self-preservation strategies during bacterial biomineralization with reference to hydrozincite and implications for fossilization of bacteria.

作者信息

Ngwenya Bryne T, Magennis Marisa, Podda Francesca, Gromov Andrei

机构信息

School of GeoSciences, University of Edinburgh, West Mains Road, Edinburgh EH9 3JW, UK

School of GeoSciences, University of Edinburgh, West Mains Road, Edinburgh EH9 3JW, UK.

出版信息

J R Soc Interface. 2014 Nov 6;11(100):20140845. doi: 10.1098/rsif.2014.0845.

Abstract

The induction of mineralization by microbes has been widely demonstrated but whether induced biomineralization leads to distinct morphologies indicative of microbial involvement remains an open question. For calcium carbonate, evidence suggests that microbial induction enhances sphere formation, but the mechanisms involved and the role of microbial surfaces are unknown. Here, we describe hydrozincite biominerals from Sardinia, Italy, which apparently start life as smooth globules on cyanobacterial filaments, and evolve to spheroidal aggregates consisting of nanoplates. Complementary laboratory experiments suggest that organic compounds are critical to produce this morphology, possibly by inducing aggregation of nanoscopic crystals or nucleation within organic globules produced by metabolizing cells. These observations suggest that production of extracellular polymeric substances by microbes may constitute an effective mechanism to enhance formation of porous spheroids that minimize cell entombment while also maintaining metabolite exchange. However, the high porosity arising from aggregation-based crystal growth probably facilitates rapid oxidation of entombed cells, reducing their potential to be fossilized.

摘要

微生物诱导矿化已得到广泛证实,但诱导生物矿化是否会导致表明微生物参与的独特形态,仍是一个悬而未决的问题。对于碳酸钙而言,有证据表明微生物诱导会增强球体形成,但其中涉及的机制以及微生物表面的作用尚不清楚。在此,我们描述了来自意大利撒丁岛的水锌矿生物矿物,它们最初显然是以蓝藻丝体上的光滑小球体形式存在,然后演变成由纳米板组成的球状聚集体。补充性的实验室实验表明,有机化合物对于产生这种形态至关重要,可能是通过诱导纳米晶体聚集或在代谢细胞产生的有机小球体内成核来实现。这些观察结果表明,微生物产生细胞外聚合物可能构成一种有效的机制,以增强多孔球体的形成,从而在最小化细胞被包裹的同时维持代谢物交换。然而,基于聚集的晶体生长所产生的高孔隙率可能会促进被包裹细胞的快速氧化,降低它们被石化的可能性。

相似文献

2
Fungal-induced fossil biomineralization.真菌诱导的化石生物矿化。
Curr Biol. 2023 Jun 19;33(12):2417-2424.e2. doi: 10.1016/j.cub.2023.04.067. Epub 2023 May 24.
4
7
The complex role of microbial metabolic activity in fossilization.微生物代谢活动在化石形成中的复杂作用。
Biol Rev Camb Philos Soc. 2022 Apr;97(2):449-465. doi: 10.1111/brv.12806. Epub 2021 Oct 14.
10
Intracellular Ca-carbonate biomineralization is widespread in cyanobacteria.细胞内碳酸钙生物矿化在蓝细菌中广泛存在。
Proc Natl Acad Sci U S A. 2014 Jul 29;111(30):10933-8. doi: 10.1073/pnas.1403510111. Epub 2014 Jul 9.

引用本文的文献

本文引用的文献

2
Characteristics and turnover of exopolymeric substances in a hypersaline microbial mat.超盐度微生物席中胞外聚合物的特性与周转
FEMS Microbiol Ecol. 2009 Feb;67(2):293-307. doi: 10.1111/j.1574-6941.2008.00614.x. Epub 2008 Nov 26.
5
Enhanced adsorption of zinc is associated with aging and lysis of bacterial cells in batch incubations.
Chemosphere. 2007 May;67(10):1982-92. doi: 10.1016/j.chemosphere.2006.11.050. Epub 2007 Jan 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验