Suppr超能文献

脊髓钠离子-钾离子-2 氯离子共转运蛋白-1(NKCC1)活性增加导致紫杉醇诱导的神经病理性疼痛中突触抑制受损。

Increased spinal cord Na⁺-K⁺-2Cl⁻ cotransporter-1 (NKCC1) activity contributes to impairment of synaptic inhibition in paclitaxel-induced neuropathic pain.

机构信息

From the Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030.

From the Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030

出版信息

J Biol Chem. 2014 Nov 7;289(45):31111-20. doi: 10.1074/jbc.M114.600320. Epub 2014 Sep 24.

Abstract

Microtubule-stabilizing agents, such as paclitaxel (Taxol), are effective chemotherapy drugs for treating many cancers, and painful neuropathy is a major dose-limiting adverse effect. Cation-chloride cotransporters, such as Na(+)-K(+)-2Cl(-) cotransporter-1 (NKCC1) and K(+)-Cl(-) cotransporter-2 (KCC2), critically influence spinal synaptic inhibition by regulating intracellular chloride concentrations. Here we show that paclitaxel treatment in rats significantly reduced GABA-induced membrane hyperpolarization and caused a depolarizing shift in GABA reversal potential of dorsal horn neurons. However, paclitaxel had no significant effect on AMPA or NMDA receptor-mediated glutamatergic input from primary afferents to dorsal horn neurons. Paclitaxel treatment significantly increased protein levels, but not mRNA levels, of NKCC1 in spinal cords. Inhibition of NKCC1 with bumetanide reversed the paclitaxel effect on GABA-mediated hyperpolarization and GABA reversal potentials. Also, intrathecal bumetanide significantly attenuated hyperalgesia and allodynia induced by paclitaxel. Co-immunoprecipitation revealed that NKCC1 interacted with β-tubulin and β-actin in spinal cords. Remarkably, paclitaxel increased NKCC1 protein levels at the plasma membrane and reduced NKCC1 levels in the cytosol of spinal cords. In contrast, treatment with an actin-stabilizing agent had no significant effect on NKCC1 protein levels in the plasma membrane or cytosolic fractions of spinal cords. In addition, inhibition of the motor protein dynein blocked paclitaxel-induced subcellular redistribution of NKCC1, whereas inhibition of kinesin-5 mimicked the paclitaxel effect. Our findings suggest that increased NKCC1 activity contributes to diminished spinal synaptic inhibition and neuropathic pain caused by paclitaxel. Paclitaxel disrupts intracellular NKCC1 trafficking by interfering with microtubule dynamics and associated motor proteins.

摘要

微管稳定剂,如紫杉醇(Taxol),是治疗多种癌症的有效化疗药物,但会引起痛性周围神经病变,这是主要的剂量限制不良反应。阳离子-氯离子共转运体,如 Na(+)-K(+)-2Cl(-) 共转运蛋白-1(NKCC1)和 K(+)-Cl(-) 共转运蛋白-2(KCC2),通过调节细胞内氯离子浓度,对脊髓突触抑制有重要影响。我们的研究表明,紫杉醇处理可显著降低大鼠背角神经元 GABA 诱导的膜超极化,并导致 GABA 反转电位去极化。然而,紫杉醇对初级传入纤维到背角神经元的 AMPA 或 NMDA 受体介导的谷氨酸能输入没有显著影响。紫杉醇处理显著增加了脊髓中 NKCC1 的蛋白水平,但对 NKCC1 的 mRNA 水平没有影响。用布美他尼抑制 NKCC1 可逆转紫杉醇对 GABA 介导的超极化和 GABA 反转电位的作用。鞘内给予布美他尼也可显著减轻紫杉醇引起的痛觉过敏和痛觉异常。共免疫沉淀显示 NKCC1 与脊髓中的β-微管蛋白和β-肌动蛋白相互作用。值得注意的是,紫杉醇增加了 NKCC1 蛋白在质膜上的水平,减少了 NKCC1 在脊髓胞浆中的水平。相比之下,用肌动蛋白稳定剂处理对 NKCC1 在质膜或胞浆部分的蛋白水平没有显著影响。此外,抑制动力蛋白 dynein 可阻止紫杉醇诱导的 NKCC1 亚细胞重新分布,而抑制 kinesin-5 则模拟了紫杉醇的作用。我们的研究结果表明,NKCC1 活性的增加导致紫杉醇引起的脊髓突触抑制和神经病理性疼痛。紫杉醇通过干扰微管动力学和相关的运动蛋白,破坏细胞内 NKCC1 的运输。

相似文献

3
Cervical spinal contusion alters Na-K-2Cl- and K-Cl- cation-chloride cotransporter expression in phrenic motor neurons.
Respir Physiol Neurobiol. 2019 Mar;261:15-23. doi: 10.1016/j.resp.2018.12.009. Epub 2018 Dec 24.
4
The chloride co-transporters, NKCC1 and KCC2, in experimental autoimmune encephalomyelitis (EAE).
Neuroscience. 2017 Mar 6;344:178-186. doi: 10.1016/j.neuroscience.2016.12.046. Epub 2017 Jan 3.
6
NMDA Receptors at Primary Afferent-Excitatory Neuron Synapses Differentially Sustain Chemotherapy- and Nerve Trauma-Induced Chronic Pain.
J Neurosci. 2023 May 24;43(21):3933-3948. doi: 10.1523/JNEUROSCI.0183-23.2023. Epub 2023 Apr 26.
7
Constitutive KCC2 Cell- and Synapse-Specifically Regulates NMDA Receptor Activity in the Spinal Cord.
J Neurosci. 2024 Jan 24;44(4):e1943232023. doi: 10.1523/JNEUROSCI.1943-23.2023.
10
Presynaptic mGluR5 receptor controls glutamatergic input through protein kinase C-NMDA receptors in paclitaxel-induced neuropathic pain.
J Biol Chem. 2017 Dec 15;292(50):20644-20654. doi: 10.1074/jbc.M117.818476. Epub 2017 Oct 26.

引用本文的文献

1
Evaluation and application analysis of animal models of PIPNP based on data mining.
Open Life Sci. 2025 Jul 8;20(1):20251122. doi: 10.1515/biol-2025-1122. eCollection 2025.
3
TRPV1-dependent NKCC1 activation in mouse lens involves integrin and the tubulin cytoskeleton.
J Cell Physiol. 2024 Nov;239(11):e31369. doi: 10.1002/jcp.31369. Epub 2024 Jul 16.
4
The biogenesis of potassium transporters: implications of disease-associated mutations.
Crit Rev Biochem Mol Biol. 2024 Jun-Aug;59(3-4):154-198. doi: 10.1080/10409238.2024.2369986. Epub 2024 Jul 1.
5
Calcineurin and CK2 Reciprocally Regulate Synaptic AMPA Receptor Phenotypes via α2δ-1 in Spinal Excitatory Neurons.
J Neurosci. 2024 Jul 17;44(29):e0392242024. doi: 10.1523/JNEUROSCI.0392-24.2024.
6
Mitotic Functions and Characters of KIF11 in Cancers.
Biomolecules. 2024 Mar 22;14(4):386. doi: 10.3390/biom14040386.
7
Current understanding of the molecular mechanisms of chemotherapy-induced peripheral neuropathy.
Front Mol Neurosci. 2024 Apr 10;17:1345811. doi: 10.3389/fnmol.2024.1345811. eCollection 2024.
10
The role of family of cation-chloride cotransporters and drug discovery methodologies.
J Pharm Anal. 2023 Dec;13(12):1471-1495. doi: 10.1016/j.jpha.2023.09.002. Epub 2023 Sep 9.

本文引用的文献

1
Casein kinase II regulates N-methyl-D-aspartate receptor activity in spinal cords and pain hypersensitivity induced by nerve injury.
J Pharmacol Exp Ther. 2014 Aug;350(2):301-12. doi: 10.1124/jpet.114.215855. Epub 2014 Jun 4.
2
Regulation of microtubule motors by tubulin isotypes and post-translational modifications.
Nat Cell Biol. 2014 Apr;16(4):335-44. doi: 10.1038/ncb2920. Epub 2014 Mar 16.
3
Diacylglycerol promotes centrosome polarization in T cells via reciprocal localization of dynein and myosin II.
Proc Natl Acad Sci U S A. 2013 Jul 16;110(29):11976-81. doi: 10.1073/pnas.1306180110. Epub 2013 Jul 1.
4
Beyond taxol: microtubule-based treatment of disease and injury of the nervous system.
Brain. 2013 Oct;136(Pt 10):2937-51. doi: 10.1093/brain/awt153. Epub 2013 Jun 27.
5
Peripheral neuropathies from chemotherapeutics and targeted agents: diagnosis, treatment, and prevention.
Neuro Oncol. 2012 Sep;14 Suppl 4(Suppl 4):iv45-54. doi: 10.1093/neuonc/nos203.
9
Two independent switches regulate cytoplasmic dynein's processivity and directionality.
Proc Natl Acad Sci U S A. 2012 Apr 3;109(14):5289-93. doi: 10.1073/pnas.1116315109. Epub 2012 Mar 12.
10
TPPP acts downstream of RhoA-ROCK-LIMK2 to regulate astral microtubule organization and spindle orientation.
J Cell Sci. 2012 Mar 15;125(Pt 6):1579-90. doi: 10.1242/jcs.096818. Epub 2012 Feb 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验