Kersting Sebastian, Rausch Valentina, Bier Frank F, von Nickisch-Rosenegk Markus
Fraunhofer Institute for Biomedical Engineering IBMT, Branch Potsdam, Am Muehlenberg 13, 14476 Potsdam-Golm, Germany ; Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany.
Fraunhofer Institute for Biomedical Engineering IBMT, Branch Potsdam, Am Muehlenberg 13, 14476 Potsdam-Golm, Germany.
Mikrochim Acta. 2014;181(13-14):1715-1723. doi: 10.1007/s00604-014-1198-5. Epub 2014 Feb 18.
We report on the development of an on-chip RPA (recombinase polymerase amplification) with simultaneous multiplex isothermal amplification and detection on a solid surface. The isothermal RPA was applied to amplify specific target sequences from the pathogens , and methicillin-resistant (MRSA) using genomic DNA. Additionally, a positive plasmid control was established as an internal control. The four targets were amplified simultaneously in a quadruplex reaction. The amplicon is labeled during on-chip RPA by reverse oligonucleotide primers coupled to a fluorophore. Both amplification and spatially resolved signal generation take place on immobilized forward primers bount to expoxy-silanized glass surfaces in a pump-driven hybridization chamber. The combination of microarray technology and sensitive isothermal nucleic acid amplification at 38 °C allows for a multiparameter analysis on a rather small area. The on-chip RPA was characterized in terms of reaction time, sensitivity and inhibitory conditions. A successful enzymatic reaction is completed in <20 min and results in detection limits of 10 colony-forming units for methicillin-resistant and and 100 colony-forming units for . The results show this method to be useful with respect to point-of-care testing and to enable simplified and miniaturized nucleic acid-based diagnostics. FigureThe combination of multiplex isothermal nucleic acid amplification with RPA and spatially-resolved signal generation on specific immobilized oligonucleotides.
我们报道了一种在芯片上进行的重组酶聚合酶扩增(RPA)技术的发展,该技术可在固体表面同时进行多重等温扩增和检测。等温RPA技术被用于从病原体中扩增特定靶序列,以及使用基因组DNA扩增耐甲氧西林金黄色葡萄球菌(MRSA)。此外,还建立了一个阳性质粒对照作为内部对照。四个靶标在四重反应中同时被扩增。扩增产物在芯片上的RPA过程中通过与荧光团偶联的反向寡核苷酸引物进行标记。扩增和空间分辨信号的产生均在泵驱动的杂交室中固定在环氧硅烷化玻璃表面的正向引物上进行。微阵列技术与38℃下灵敏的等温核酸扩增相结合,可在相当小的区域内进行多参数分析。对芯片上的RPA技术进行了反应时间、灵敏度和抑制条件等方面的表征。一个成功的酶促反应在不到20分钟内完成,对耐甲氧西林金黄色葡萄球菌的检测限为10个菌落形成单位,对其他病原体的检测限为100个菌落形成单位。结果表明,该方法在即时检测方面很有用,能够实现基于核酸的诊断的简化和小型化。图多重等温核酸扩增与RPA以及在特定固定化寡核苷酸上进行空间分辨信号产生的结合。