Department of Chemistry, Institute for Biophysical Dynamics, The University of Chicago, Illinois 60637, United States.
Anal Chem. 2011 May 1;83(9):3533-40. doi: 10.1021/ac200247e. Epub 2011 Apr 8.
In this paper, digital quantitative detection of nucleic acids was achieved at the single-molecule level by chemical initiation of over one thousand sequence-specific, nanoliter isothermal amplification reactions in parallel. Digital polymerase chain reaction (digital PCR), a method used for quantification of nucleic acids, counts the presence or absence of amplification of individual molecules. However, it still requires temperature cycling, which is undesirable under resource-limited conditions. This makes isothermal methods for nucleic acid amplification, such as recombinase polymerase amplification (RPA), more attractive. A microfluidic digital RPA SlipChip is described here for simultaneous initiation of over one thousand nL-scale RPA reactions by adding a chemical initiator to each reaction compartment with a simple slipping step after instrument-free pipet loading. Two designs of the SlipChip, two-step slipping and one-step slipping, were validated using digital RPA. By using the digital RPA SlipChip, false-positive results from preinitiation of the RPA amplification reaction before incubation were eliminated. End point fluorescence readout was used for "yes or no" digital quantification. The performance of digital RPA in a SlipChip was validated by amplifying and counting single molecules of the target nucleic acid, methicillin-resistant Staphylococcus aureus (MRSA) genomic DNA. The digital RPA on SlipChip was also tolerant to fluctuations of the incubation temperature (37-42 °C), and its performance was comparable to digital PCR on the same SlipChip design. The digital RPA SlipChip provides a simple method to quantify nucleic acids without requiring thermal cycling or kinetic measurements, with potential applications in diagnostics and environmental monitoring under resource-limited settings. The ability to initiate thousands of chemical reactions in parallel on the nanoliter scale using solvent-resistant glass devices is likely to be useful for a broader range of applications.
本文通过在纳米级规模上并行进行超过一千次序列特异性、等温扩增反应的化学引发,实现了单分子水平上的核酸数字定量检测。数字聚合酶链反应(digital PCR)是一种用于核酸定量的方法,它通过计数单个分子的扩增存在或不存在来实现。然而,它仍然需要温度循环,这在资源有限的情况下是不理想的。这使得等温核酸扩增方法,如重组酶聚合酶扩增(RPA),更具吸引力。本文介绍了一种微流控数字 RPA SlipChip,通过在仪器-free 移液器加载后简单的滑动步骤,向每个反应隔室添加化学引发剂,同时启动超过一千个纳升级规模的 RPA 反应。使用数字 RPA 对两种 SlipChip 设计(两步滑动和一步滑动)进行了验证。通过使用数字 RPA SlipChip,消除了孵育前 RPA 扩增反应预引发导致的假阳性结果。终点荧光读取用于“是或否”数字定量。通过扩增和计数目标核酸(耐甲氧西林金黄色葡萄球菌(MRSA)基因组 DNA)的单分子,验证了 SlipChip 中数字 RPA 的性能。数字 RPA 在 SlipChip 上也能耐受孵育温度的波动(37-42°C),并且其性能与相同 SlipChip 设计上的数字 PCR 相当。数字 RPA SlipChip 提供了一种无需热循环或动力学测量即可定量核酸的简单方法,在资源有限的环境下,在诊断和环境监测方面具有潜在应用。在耐溶剂玻璃设备上以纳米级规模并行引发数千个化学反应的能力可能对更广泛的应用有用。