Suppr超能文献

连接来自连通性图谱的基因表达数据以及用于小分子作用机制分析的计算机模拟靶点预测。

Connecting gene expression data from connectivity map and in silico target predictions for small molecule mechanism-of-action analysis.

作者信息

Ravindranath Aakash Chavan, Perualila-Tan Nolen, Kasim Adetayo, Drakakis Georgios, Liggi Sonia, Brewerton Suzanne C, Mason Daniel, Bodkin Michael J, Evans David A, Bhagwat Aditya, Talloen Willem, Göhlmann Hinrich W H, Shkedy Ziv, Bender Andreas

机构信息

Unilever Centre for Molecular Science Informatics, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.

出版信息

Mol Biosyst. 2015 Jan;11(1):86-96. doi: 10.1039/c4mb00328d. Epub 2014 Sep 25.

Abstract

Integrating gene expression profiles with certain proteins can improve our understanding of the fundamental mechanisms in protein-ligand binding. This paper spotlights the integration of gene expression data and target prediction scores, providing insight into mechanism of action (MoA). Compounds are clustered based upon the similarity of their predicted protein targets and each cluster is linked to gene sets using Linear Models for Microarray Data. MLP analysis is used to generate gene sets based upon their biological processes and a qualitative search is performed on the homogeneous target-based compound clusters to identify pathways. Genes and proteins were linked through pathways for 6 of the 8 MCF7 and 6 of the 11 PC3 clusters. Three compound clusters are studied; (i) the target-driven cluster involving HSP90 inhibitors, geldanamycin and tanespimycin induces differential expression for HSP90-related genes and overlap with pathway response to unfolded protein. Gene expression results are in agreement with target prediction and pathway annotations add information to enable understanding of MoA. (ii) The antipsychotic cluster shows differential expression for genes LDLR and INSIG-1 and is predicted to target CYP2D6. Pathway steroid metabolic process links the protein and respective genes, hypothesizing the MoA for antipsychotics. A sub-cluster (verepamil and dexverepamil), although sharing similar protein targets with the antipsychotic drug cluster, has a lower intensity of expression profile on related genes, indicating that this method distinguishes close sub-clusters and suggests differences in their MoA. Lastly, (iii) the thiazolidinediones drug cluster predicted peroxisome proliferator activated receptor (PPAR) PPAR-alpha, PPAR-gamma, acyl CoA desaturase and significant differential expression of genes ANGPTL4, FABP4 and PRKCD. The targets and genes are linked via PPAR signalling pathway and induction of apoptosis, generating a hypothesis for the MoA of thiazolidinediones. Our analysis show one or more underlying MoA for compounds and were well-substantiated with literature.

摘要

将基因表达谱与特定蛋白质相结合,可以增进我们对蛋白质 - 配体结合基本机制的理解。本文重点介绍了基因表达数据与靶标预测分数的整合,从而深入了解作用机制(MoA)。化合物根据其预测蛋白质靶标的相似性进行聚类,并且使用微阵列数据的线性模型将每个聚类与基因集相关联。多层感知器(MLP)分析用于根据生物过程生成基因集,并对基于均匀靶标的化合物聚类进行定性搜索以识别途径。在8个MCF7聚类中的6个以及11个PC3聚类中的6个中,基因和蛋白质通过途径相连。研究了三个化合物聚类;(i)涉及HSP90抑制剂格尔德霉素和坦螺旋霉素的靶标驱动聚类诱导HSP90相关基因的差异表达,并与未折叠蛋白的途径反应重叠。基因表达结果与靶标预测一致,途径注释增加了信息以有助于理解作用机制。(ii)抗精神病药物聚类显示基因LDLR和INSIG - 1的差异表达,并预测靶向CYP2D6。途径类固醇代谢过程将蛋白质和相应基因联系起来,推测了抗精神病药物的作用机制。一个子聚类(维拉帕米和右旋维拉帕米),尽管与抗精神病药物聚类共享相似的蛋白质靶标,但在相关基因上的表达谱强度较低,表明该方法能够区分相近的子聚类,并暗示它们作用机制的差异。最后,(iii)噻唑烷二酮类药物聚类预测了过氧化物酶体增殖物激活受体(PPAR)PPAR - α、PPAR - γ、酰基辅酶A去饱和酶以及基因ANGPTL4、FABP4和PRKCD的显著差异表达。靶标和基因通过PPAR信号通路和细胞凋亡诱导相连,从而产生了噻唑烷二酮类药物作用机制的假设。我们的分析揭示了化合物的一种或多种潜在作用机制,并且有充分的文献依据。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验