Marzec Katarzyna M, Perez-Guaita David, de Veij Marleen, McNaughton Don, Baranska Malgorzata, Dixon Matthew W A, Tilley Leann, Wood Bayden R
Centre for Biospectroscopy, School of Chemistry, Monash University, Clayton, VIC, 3800 (Australia); Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow (Poland).
Chemphyschem. 2014 Dec 15;15(18):3963-8. doi: 10.1002/cphc.201402598. Epub 2014 Sep 26.
In general, the first overtone modes produce weak bands that appear at approximately twice the wavenumber value of the fundamental transitions in vibrational spectra. Here, we report the existence of a series of enhanced non-fundamental bands in resonance Raman (RR) spectra recorded for hemoglobin (Hb) inside the highly concentrated heme environment of the red blood cell (RBC) by exciting with a 514.5 nm laser line. Such bands are most intense when detecting parallel-polarized light. The enhancement is explained through excitonic theory invoking a type C scattering mechanism and bands have been assigned to overtone and combination bands based on symmetry arguments and polarization measurements. By using malaria diagnosis as an example, we demonstrate that combining the non-fundamental and fundamental regions of the RR spectrum improves the sensitivity and diagnostic capability of the technique. The discovery will have considerable implications for the ongoing development of Raman spectroscopy for blood disease diagnoses and monitoring heme perturbation in response to environmental stimuli.
一般来说,第一泛音模式产生的弱谱带出现在振动光谱中基频跃迁波数的大约两倍处。在此,我们报告通过用514.5 nm激光线激发,在红细胞(RBC)高度浓缩的血红素环境中记录的血红蛋白(Hb)的共振拉曼(RR)光谱中存在一系列增强的非基频谱带。当检测平行偏振光时,此类谱带最为强烈。这种增强通过激子理论调用C型散射机制来解释,并且基于对称性论证和偏振测量,这些谱带已被归为泛音和组合谱带。以疟疾诊断为例,我们证明结合RR光谱的非基频和基频区域可提高该技术的灵敏度和诊断能力。这一发现将对拉曼光谱技术在血液疾病诊断及监测血红素对环境刺激的扰动方面的持续发展产生重大影响。