Suppr超能文献

嗜热乳酸脱氢酶变构运动的核心。

The core of allosteric motion in Thermus caldophilus L-lactate dehydrogenase.

机构信息

From the Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.

the Department of Biotechnology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan, and.

出版信息

J Biol Chem. 2014 Nov 7;289(45):31550-64. doi: 10.1074/jbc.M114.599092. Epub 2014 Sep 25.

Abstract

For Thermus caldophilus L-lactate dehydrogenase (TcLDH), fructose 1,6-bisphosphate (FBP) reduced the pyruvate S(0.5) value 10(3)-fold and increased the V(max) value 4-fold at 30 °C and pH 7.0, indicating that TcLDH has a much more T state-sided allosteric equilibrium than Thermus thermophilus L-lactate dehydrogenase, which has only two amino acid replacements, A154G and H179Y. The inactive (T) and active (R) state structures of TcLDH were determined at 1.8 and 2.0 Å resolution, respectively. The structures indicated that two mobile regions, MR1 (positions 172-185) and MR2 (positions 211-221), form a compact core for allosteric motion, and His(179) of MR1 forms constitutive hydrogen bonds with MR2. The Q4(R) mutation, which comprises the L67E, H68D, E178K, and A235R replacements, increased V(max) 4-fold but reduced pyruvate S(0.5) only 5-fold in the reaction without FBP. In contrast, the P2 mutation, comprising the R173Q and R216L replacements, did not markedly increase V(max), but 10(2)-reduced pyruvate S(0.5), and additively increased the FBP-independent activity of the Q4(R) enzyme. The two types of mutation consistently increased the thermal stability of the enzyme. The MR1-MR2 area is a positively charged cluster, and its center approaches another positively charged cluster (N domain cluster) across the Q-axis subunit interface by 5 Å, when the enzyme undergoes the T to R transition. Structural and kinetic analyses thus revealed the simple and unique allosteric machinery of TcLDH, where the MR1-MR2 area pivotally moves during the allosteric motion and mediates the allosteric equilibrium through electrostatic repulsion within the protein molecule.

摘要

对于嗜热栖热菌 L-乳酸脱氢酶(TcLDH),果糖 1,6-二磷酸(FBP)将丙酮酸 S(0.5)值降低 10(3)倍,并在 30°C 和 pH 值 7.0 下将 V(max)值增加 4 倍,表明 TcLDH 的 T 态变构平衡远大于仅有两个氨基酸替换的 Thermus thermophilus L-乳酸脱氢酶,这两个替换分别是 A154G 和 H179Y。TcLDH 的无活性(T)和活性(R)状态结构分别在 1.8 和 2.0Å分辨率下确定。这些结构表明,两个可移动区域 MR1(位置 172-185)和 MR2(位置 211-221)形成了变构运动的紧凑核心,并且 MR1 的 His(179)与 MR2 形成组成性氢键。包含 L67E、H68D、E178K 和 A235R 替换的 Q4(R)突变将 V(max)增加了 4 倍,但在没有 FBP 的反应中,仅将丙酮酸 S(0.5)降低了 5 倍。相比之下,包含 R173Q 和 R216L 替换的 P2 突变并未显著增加 V(max),但将丙酮酸 S(0.5)降低了 10(2)倍,并且使 Q4(R)酶的 FBP 非依赖性活性增加。两种类型的突变一致增加了酶的热稳定性。MR1-MR2 区域是一个带正电荷的簇,当酶经历 T 到 R 的转变时,其中心通过 5Å 沿 Q 轴亚基界面接近另一个带正电荷的簇(N 域簇)。结构和动力学分析因此揭示了 TcLDH 的简单而独特的变构机制,其中在变构运动过程中,MR1-MR2 区域枢轴移动,并通过分子内的静电排斥来调节变构平衡。

相似文献

1
The core of allosteric motion in Thermus caldophilus L-lactate dehydrogenase.
J Biol Chem. 2014 Nov 7;289(45):31550-64. doi: 10.1074/jbc.M114.599092. Epub 2014 Sep 25.
3
Sampling the conformational energy landscape of a hyperthermophilic protein by engineering key substitutions.
Mol Biol Evol. 2012 Jun;29(6):1683-94. doi: 10.1093/molbev/mss015. Epub 2012 Jan 19.
9
Interface Residues That Drive Allosteric Transitions Also Control the Assembly of l-Lactate Dehydrogenase.
J Phys Chem B. 2018 Dec 13;122(49):11195-11205. doi: 10.1021/acs.jpcb.8b06430. Epub 2018 Aug 27.

引用本文的文献

3
Mechanistic insights into the allosteric regulation of bacterial ADP-glucose pyrophosphorylases.
J Biol Chem. 2017 Apr 14;292(15):6255-6268. doi: 10.1074/jbc.M116.773408. Epub 2017 Feb 21.

本文引用的文献

1
Regulation of the activity of lactate dehydrogenases from four lactic acid bacteria.
J Biol Chem. 2013 Jul 19;288(29):21295-21306. doi: 10.1074/jbc.M113.458265. Epub 2013 May 17.
2
Sampling the conformational energy landscape of a hyperthermophilic protein by engineering key substitutions.
Mol Biol Evol. 2012 Jun;29(6):1683-94. doi: 10.1093/molbev/mss015. Epub 2012 Jan 19.
3
A molecular design that stabilizes active state in bacterial allosteric L-lactate dehydrogenases.
J Biochem. 2011 Nov;150(5):579-91. doi: 10.1093/jb/mvr100. Epub 2011 Aug 9.
5
Raster3D: photorealistic molecular graphics.
Methods Enzymol. 1997;277:505-24. doi: 10.1016/s0076-6879(97)77028-9.
6
Activity, stability and structural studies of lactate dehydrogenases adapted to extreme thermal environments.
J Mol Biol. 2007 Nov 23;374(2):547-62. doi: 10.1016/j.jmb.2007.09.049. Epub 2007 Sep 22.
7
Direct observation in solution of a preexisting structural equilibrium for a mutant of the allosteric aspartate transcarbamoylase.
Proc Natl Acad Sci U S A. 2007 Jan 9;104(2):495-500. doi: 10.1073/pnas.0607641104. Epub 2007 Jan 3.
8
Application of a Theory of Enzyme Specificity to Protein Synthesis.
Proc Natl Acad Sci U S A. 1958 Feb;44(2):98-104. doi: 10.1073/pnas.44.2.98.
9
ON THE NATURE OF ALLOSTERIC TRANSITIONS: A PLAUSIBLE MODEL.
J Mol Biol. 1965 May;12:88-118. doi: 10.1016/s0022-2836(65)80285-6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验