From the Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.
the Department of Biotechnology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan, and.
J Biol Chem. 2014 Nov 7;289(45):31550-64. doi: 10.1074/jbc.M114.599092. Epub 2014 Sep 25.
For Thermus caldophilus L-lactate dehydrogenase (TcLDH), fructose 1,6-bisphosphate (FBP) reduced the pyruvate S(0.5) value 10(3)-fold and increased the V(max) value 4-fold at 30 °C and pH 7.0, indicating that TcLDH has a much more T state-sided allosteric equilibrium than Thermus thermophilus L-lactate dehydrogenase, which has only two amino acid replacements, A154G and H179Y. The inactive (T) and active (R) state structures of TcLDH were determined at 1.8 and 2.0 Å resolution, respectively. The structures indicated that two mobile regions, MR1 (positions 172-185) and MR2 (positions 211-221), form a compact core for allosteric motion, and His(179) of MR1 forms constitutive hydrogen bonds with MR2. The Q4(R) mutation, which comprises the L67E, H68D, E178K, and A235R replacements, increased V(max) 4-fold but reduced pyruvate S(0.5) only 5-fold in the reaction without FBP. In contrast, the P2 mutation, comprising the R173Q and R216L replacements, did not markedly increase V(max), but 10(2)-reduced pyruvate S(0.5), and additively increased the FBP-independent activity of the Q4(R) enzyme. The two types of mutation consistently increased the thermal stability of the enzyme. The MR1-MR2 area is a positively charged cluster, and its center approaches another positively charged cluster (N domain cluster) across the Q-axis subunit interface by 5 Å, when the enzyme undergoes the T to R transition. Structural and kinetic analyses thus revealed the simple and unique allosteric machinery of TcLDH, where the MR1-MR2 area pivotally moves during the allosteric motion and mediates the allosteric equilibrium through electrostatic repulsion within the protein molecule.
对于嗜热栖热菌 L-乳酸脱氢酶(TcLDH),果糖 1,6-二磷酸(FBP)将丙酮酸 S(0.5)值降低 10(3)倍,并在 30°C 和 pH 值 7.0 下将 V(max)值增加 4 倍,表明 TcLDH 的 T 态变构平衡远大于仅有两个氨基酸替换的 Thermus thermophilus L-乳酸脱氢酶,这两个替换分别是 A154G 和 H179Y。TcLDH 的无活性(T)和活性(R)状态结构分别在 1.8 和 2.0Å分辨率下确定。这些结构表明,两个可移动区域 MR1(位置 172-185)和 MR2(位置 211-221)形成了变构运动的紧凑核心,并且 MR1 的 His(179)与 MR2 形成组成性氢键。包含 L67E、H68D、E178K 和 A235R 替换的 Q4(R)突变将 V(max)增加了 4 倍,但在没有 FBP 的反应中,仅将丙酮酸 S(0.5)降低了 5 倍。相比之下,包含 R173Q 和 R216L 替换的 P2 突变并未显著增加 V(max),但将丙酮酸 S(0.5)降低了 10(2)倍,并且使 Q4(R)酶的 FBP 非依赖性活性增加。两种类型的突变一致增加了酶的热稳定性。MR1-MR2 区域是一个带正电荷的簇,当酶经历 T 到 R 的转变时,其中心通过 5Å 沿 Q 轴亚基界面接近另一个带正电荷的簇(N 域簇)。结构和动力学分析因此揭示了 TcLDH 的简单而独特的变构机制,其中在变构运动过程中,MR1-MR2 区域枢轴移动,并通过分子内的静电排斥来调节变构平衡。