Suppr超能文献

用于社交活动识别的黑森正则化协同训练

Hessian-regularized co-training for social activity recognition.

作者信息

Liu Weifeng, Li Yang, Lin Xu, Tao Dacheng, Wang Yanjiang

机构信息

College of Information and Control Engineering, China University of Petroleum (East China), Qingdao, Shandong, China.

Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China; The Chinese University of Hong Kong, Hong Kong, China.

出版信息

PLoS One. 2014 Sep 26;9(9):e108474. doi: 10.1371/journal.pone.0108474. eCollection 2014.

Abstract

Co-training is a major multi-view learning paradigm that alternately trains two classifiers on two distinct views and maximizes the mutual agreement on the two-view unlabeled data. Traditional co-training algorithms usually train a learner on each view separately and then force the learners to be consistent across views. Although many co-trainings have been developed, it is quite possible that a learner will receive erroneous labels for unlabeled data when the other learner has only mediocre accuracy. This usually happens in the first rounds of co-training, when there are only a few labeled examples. As a result, co-training algorithms often have unstable performance. In this paper, Hessian-regularized co-training is proposed to overcome these limitations. Specifically, each Hessian is obtained from a particular view of examples; Hessian regularization is then integrated into the learner training process of each view by penalizing the regression function along the potential manifold. Hessian can properly exploit the local structure of the underlying data manifold. Hessian regularization significantly boosts the generalizability of a classifier, especially when there are a small number of labeled examples and a large number of unlabeled examples. To evaluate the proposed method, extensive experiments were conducted on the unstructured social activity attribute (USAA) dataset for social activity recognition. Our results demonstrate that the proposed method outperforms baseline methods, including the traditional co-training and LapCo algorithms.

摘要

协同训练是一种主要的多视图学习范式,它在两个不同视图上交替训练两个分类器,并使两个视图的未标记数据上的相互一致性最大化。传统的协同训练算法通常在每个视图上分别训练一个学习器,然后强制这些学习器在不同视图间保持一致。尽管已经开发了许多协同训练方法,但当另一个学习器的准确率仅为中等水平时,一个学习器很可能会为未标记数据接收到错误标签。这种情况通常发生在协同训练的第一轮,此时只有少量的标记示例。因此,协同训练算法的性能往往不稳定。在本文中,提出了黑塞正则化协同训练来克服这些局限性。具体来说,每个黑塞矩阵是从示例的特定视图中获得的;然后通过沿潜在流形惩罚回归函数,将黑塞正则化集成到每个视图的学习器训练过程中。黑塞矩阵可以恰当地利用基础数据流形的局部结构。黑塞正则化显著提高了分类器的泛化能力,特别是当有少量标记示例和大量未标记示例时。为了评估所提出的方法,针对社会活动识别在非结构化社会活动属性(USAA)数据集上进行了广泛的实验。我们的结果表明,所提出的方法优于包括传统协同训练和LapCo算法在内的基线方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e751/4178174/bbe9edac247c/pone.0108474.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验