Liu Weifeng, Ma Xueqi, Zhou Yicong, Tao Dapeng, Cheng Jun
IEEE Trans Cybern. 2019 Aug;49(8):2927-2940. doi: 10.1109/TCYB.2018.2833843. Epub 2018 May 22.
The explosive growth of multimedia data on the Internet makes it essential to develop innovative machine learning algorithms for practical applications especially where only a small number of labeled samples are available. Manifold regularized semi-supervised learning (MRSSL) thus received intensive attention recently because it successfully exploits the local structure of data distribution including both labeled and unlabeled samples to leverage the generalization ability of a learning model. Although there are many representative works in MRSSL, including Laplacian regularization (LapR) and Hessian regularization, how to explore and exploit the local geometry of data manifold is still a challenging problem. In this paper, we introduce a fully efficient approximation algorithm of graph p -Laplacian, which significantly saving the computing cost. And then we propose p -LapR (pLapR) to preserve the local geometry. Specifically, p -Laplacian is a natural generalization of the standard graph Laplacian and provides convincing theoretical evidence to better preserve the local structure. We apply pLapR to support vector machines and kernel least squares and conduct the implementations for scene recognition. Extensive experiments on the Scene 67 dataset, Scene 15 dataset, and UC-Merced dataset validate the effectiveness of pLapR in comparison to the conventional manifold regularization methods.
互联网上多媒体数据的爆炸式增长使得开发适用于实际应用的创新机器学习算法变得至关重要,特别是在只有少量标记样本可用的情况下。因此,流形正则化半监督学习(MRSSL)最近受到了广泛关注,因为它成功地利用了包括标记和未标记样本在内的数据分布的局部结构,以增强学习模型的泛化能力。尽管在MRSSL中有许多代表性的工作,包括拉普拉斯正则化(LapR)和黑塞正则化,但如何探索和利用数据流形的局部几何结构仍然是一个具有挑战性的问题。在本文中,我们介绍了一种图p -拉普拉斯的完全高效近似算法,它显著节省了计算成本。然后我们提出了p -拉普拉斯正则化(pLapR)来保留局部几何结构。具体来说,p -拉普拉斯是标准图拉普拉斯的自然推广,并为更好地保留局部结构提供了令人信服的理论依据。我们将pLapR应用于支持向量机和核最小二乘法,并进行场景识别的实现。在场景67数据集、场景15数据集和加州大学默塞德数据集上进行的大量实验验证了pLapR与传统流形正则化方法相比的有效性。