Thabet Sana, Simonet France, Lemaire Marc, Guillard Chantal, Cotton Pascale
Université de Lyon, Université Lyon 1, CNRS-UCB-INSA, UMR 5240 Microbiologie, Adaptation et Pathogénie, Génétique Moléculaire des Levures, Domaine Scientifique de la Doua, Villeurbanne, France Université de Lyon, Université Lyon 1, CNRS, UMR 5256, IRCELYON, Institut de Recherches sur la Catalyse et l'Environnement de Lyon, Villeurbanne, France.
Université de Lyon, Université Lyon 1, CNRS, UMR 5256, IRCELYON, Institut de Recherches sur la Catalyse et l'Environnement de Lyon, Villeurbanne, France.
Appl Environ Microbiol. 2014 Dec;80(24):7527-35. doi: 10.1128/AEM.02416-14. Epub 2014 Sep 26.
We have investigated the antimicrobial effects of photocatalysis on the yeast model Saccharomyces cerevisiae. To accurately study the antimicrobial mechanisms of the photocatalytic process, we focused our investigations on two questions: the entry of the nanoparticles in treated cells and the fate of the intracellular environment. Transmission electronic microscopy did not reveal any entry of nanoparticles within the cells, even for long exposure times, despite degradation of the cell wall space and deconstruction of cellular compartments. In contrast to proteins located at the periphery of the cells, intracellular proteins did not disappear uniformly. Disappearance or persistence of proteins from the pool of oxidized intracellular isoforms was not correlated to their functions. Altogether, our data suggested that photocatalysis induces the establishment of an intracellular oxidative environment. This hypothesis was sustained by the detection of an increased level of superoxide ions (O2°(-)) in treated cells and by greater cell cultivability for cells expressing oxidant stress response genes during photocatalytic exposure. The increase in intracellular ROS, which was not connected to the entry of nanoparticles within the cells or to a direct contact with the plasma membrane, could be the result of an imbalance in redox status amplified by chain reactions. Moreover, we expanded our study to other yeast and filamentous fungi and pointed out that, in contrast to the laboratory model S. cerevisiae, some environmental strains are very resistant to photocatalysis. This could be related to the cell wall composition and structure.
我们研究了光催化对酵母模型酿酒酵母的抗菌作用。为了准确研究光催化过程的抗菌机制,我们将研究重点集中在两个问题上:纳米颗粒进入处理过的细胞以及细胞内环境的变化。透射电子显微镜检查未发现纳米颗粒进入细胞内,即使长时间暴露也是如此,尽管细胞壁空间发生了降解且细胞区室解构。与位于细胞周边的蛋白质不同,细胞内蛋白质并非均匀消失。氧化型细胞内同工型蛋白质池中的蛋白质消失或持续存在与其功能无关。总之,我们的数据表明光催化会诱导细胞内氧化环境的形成。这一假设得到了以下证据的支持:在处理过的细胞中检测到超氧离子(O2°(-))水平升高,以及在光催化暴露期间,表达氧化应激反应基因的细胞具有更高的细胞可培养性。细胞内活性氧的增加与纳米颗粒进入细胞或与质膜的直接接触无关,可能是由连锁反应放大的氧化还原状态失衡导致的。此外,我们将研究扩展到其他酵母和丝状真菌,并指出,与实验室模型酿酒酵母不同,一些环境菌株对光催化具有很强的抗性。这可能与细胞壁的组成和结构有关。