Suppr超能文献

光催化对真菌细胞的影响:对酿酒酵母细胞和分子效应的描述

Impact of photocatalysis on fungal cells: depiction of cellular and molecular effects on Saccharomyces cerevisiae.

作者信息

Thabet Sana, Simonet France, Lemaire Marc, Guillard Chantal, Cotton Pascale

机构信息

Université de Lyon, Université Lyon 1, CNRS-UCB-INSA, UMR 5240 Microbiologie, Adaptation et Pathogénie, Génétique Moléculaire des Levures, Domaine Scientifique de la Doua, Villeurbanne, France Université de Lyon, Université Lyon 1, CNRS, UMR 5256, IRCELYON, Institut de Recherches sur la Catalyse et l'Environnement de Lyon, Villeurbanne, France.

Université de Lyon, Université Lyon 1, CNRS, UMR 5256, IRCELYON, Institut de Recherches sur la Catalyse et l'Environnement de Lyon, Villeurbanne, France.

出版信息

Appl Environ Microbiol. 2014 Dec;80(24):7527-35. doi: 10.1128/AEM.02416-14. Epub 2014 Sep 26.

Abstract

We have investigated the antimicrobial effects of photocatalysis on the yeast model Saccharomyces cerevisiae. To accurately study the antimicrobial mechanisms of the photocatalytic process, we focused our investigations on two questions: the entry of the nanoparticles in treated cells and the fate of the intracellular environment. Transmission electronic microscopy did not reveal any entry of nanoparticles within the cells, even for long exposure times, despite degradation of the cell wall space and deconstruction of cellular compartments. In contrast to proteins located at the periphery of the cells, intracellular proteins did not disappear uniformly. Disappearance or persistence of proteins from the pool of oxidized intracellular isoforms was not correlated to their functions. Altogether, our data suggested that photocatalysis induces the establishment of an intracellular oxidative environment. This hypothesis was sustained by the detection of an increased level of superoxide ions (O2°(-)) in treated cells and by greater cell cultivability for cells expressing oxidant stress response genes during photocatalytic exposure. The increase in intracellular ROS, which was not connected to the entry of nanoparticles within the cells or to a direct contact with the plasma membrane, could be the result of an imbalance in redox status amplified by chain reactions. Moreover, we expanded our study to other yeast and filamentous fungi and pointed out that, in contrast to the laboratory model S. cerevisiae, some environmental strains are very resistant to photocatalysis. This could be related to the cell wall composition and structure.

摘要

我们研究了光催化对酵母模型酿酒酵母的抗菌作用。为了准确研究光催化过程的抗菌机制,我们将研究重点集中在两个问题上:纳米颗粒进入处理过的细胞以及细胞内环境的变化。透射电子显微镜检查未发现纳米颗粒进入细胞内,即使长时间暴露也是如此,尽管细胞壁空间发生了降解且细胞区室解构。与位于细胞周边的蛋白质不同,细胞内蛋白质并非均匀消失。氧化型细胞内同工型蛋白质池中的蛋白质消失或持续存在与其功能无关。总之,我们的数据表明光催化会诱导细胞内氧化环境的形成。这一假设得到了以下证据的支持:在处理过的细胞中检测到超氧离子(O2°(-))水平升高,以及在光催化暴露期间,表达氧化应激反应基因的细胞具有更高的细胞可培养性。细胞内活性氧的增加与纳米颗粒进入细胞或与质膜的直接接触无关,可能是由连锁反应放大的氧化还原状态失衡导致的。此外,我们将研究扩展到其他酵母和丝状真菌,并指出,与实验室模型酿酒酵母不同,一些环境菌株对光催化具有很强的抗性。这可能与细胞壁的组成和结构有关。

相似文献

1
Impact of photocatalysis on fungal cells: depiction of cellular and molecular effects on Saccharomyces cerevisiae.
Appl Environ Microbiol. 2014 Dec;80(24):7527-35. doi: 10.1128/AEM.02416-14. Epub 2014 Sep 26.
2
Lead sulfide nanoparticles increase cell wall chitin content and induce apoptosis in Saccharomyces cerevisiae.
J Hazard Mater. 2014 May 30;273:7-16. doi: 10.1016/j.jhazmat.2014.03.008. Epub 2014 Mar 18.
3
Improved cellulase production in recombinant Saccharomyces cerevisiae by disrupting the cell wall protein-encoding gene CWP2.
J Biosci Bioeng. 2020 Feb;129(2):165-171. doi: 10.1016/j.jbiosc.2019.08.012. Epub 2019 Sep 16.
5
Vacuolar H+-ATPase Protects Saccharomyces cerevisiae Cells against Ethanol-Induced Oxidative and Cell Wall Stresses.
Appl Environ Microbiol. 2016 May 2;82(10):3121-3130. doi: 10.1128/AEM.00376-16. Print 2016 May 15.
8
Cell wall construction in Saccharomyces cerevisiae.
Yeast. 2006 Feb;23(3):185-202. doi: 10.1002/yea.1349.
10
How do I begin? Sensing extracellular stress to maintain yeast cell wall integrity.
Eur J Cell Biol. 2011 Sep;90(9):740-4. doi: 10.1016/j.ejcb.2011.04.006. Epub 2011 Jun 2.

引用本文的文献

2
Efficient photocatalytic bactericidal performance of green-synthesised TiO/reduced graphene oxide using banana peel extracts.
Heliyon. 2024 Feb 17;10(4):e26636. doi: 10.1016/j.heliyon.2024.e26636. eCollection 2024 Feb 29.
3
Light effects on Lasiodiplodia theobromae metabolome cultured in vitro.
Metabolomics. 2023 Aug 14;19(8):75. doi: 10.1007/s11306-023-02041-7.
4
Evaluation of Antifungal Properties of Titania P25.
Micromachines (Basel). 2022 Oct 28;13(11):1851. doi: 10.3390/mi13111851.
6
Antifungal Effect of Copper Nanoparticles against , an Obligate Symbiont of Ambrosia Beetle.
J Fungi (Basel). 2022 Mar 27;8(4):347. doi: 10.3390/jof8040347.
7
Engineered titania nanomaterials in advanced clinical applications.
Beilstein J Nanotechnol. 2022 Feb 14;13:201-218. doi: 10.3762/bjnano.13.15. eCollection 2022.
8
Antimicrobial Metal Nanomaterials: From Passive to Stimuli-Activated Applications.
Adv Sci (Weinh). 2020 Apr 6;7(10):1902913. doi: 10.1002/advs.201902913. eCollection 2020 May.
10
Identifying the role of reactive oxygen species (ROSs) in Fusarium solani spores inactivation.
AMB Express. 2016 Dec;6(1):81. doi: 10.1186/s13568-016-0257-1. Epub 2016 Oct 1.

本文引用的文献

1
TiO2 photocatalysis damages lipids and proteins in Escherichia coli.
Appl Environ Microbiol. 2014 Apr;80(8):2573-81. doi: 10.1128/AEM.03995-13. Epub 2014 Feb 14.
2
Superoxide radicals have a protective role during H2O2 stress.
Mol Biol Cell. 2013 Sep;24(18):2876-84. doi: 10.1091/mbc.E13-01-0052. Epub 2013 Jul 17.
3
Fungal cell wall organization and biosynthesis.
Adv Genet. 2013;81:33-82. doi: 10.1016/B978-0-12-407677-8.00002-6.
4
Bactericidal efficiency and mode of action: a comparative study of photochemistry and photocatalysis.
Water Res. 2012 Jun 15;46(10):3208-18. doi: 10.1016/j.watres.2012.03.019. Epub 2012 Mar 17.
5
The Top 10 fungal pathogens in molecular plant pathology.
Mol Plant Pathol. 2012 May;13(4):414-30. doi: 10.1111/j.1364-3703.2011.00783.x.
6
Oxidative stress-induced cytotoxic and genotoxic effects of nano-sized titanium dioxide particles in human HaCaT keratinocytes.
Toxicology. 2012 Jun 14;296(1-3):27-36. doi: 10.1016/j.tox.2012.02.016. Epub 2012 Mar 16.
7
The response to heat shock and oxidative stress in Saccharomyces cerevisiae.
Genetics. 2012 Apr;190(4):1157-95. doi: 10.1534/genetics.111.128033. Epub 2011 Dec 29.
8
Removal of microorganisms and their chemical metabolites from water using semiconductor photocatalysis.
J Hazard Mater. 2012 Apr 15;211-212:161-71. doi: 10.1016/j.jhazmat.2011.11.058. Epub 2011 Nov 25.
9
Candida albicans versus Candida dubliniensis: Why Is C. albicans More Pathogenic?
Int J Microbiol. 2012;2012:205921. doi: 10.1155/2012/205921. Epub 2011 Sep 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验