Suppr超能文献

酵母细胞应对热休克和氧化应激的反应。

The response to heat shock and oxidative stress in Saccharomyces cerevisiae.

机构信息

Department of Microbiology and Molecular Genetics, University of Texas Medical School and Graduate School of Biomedical Sciences, Houston, Texas 77030, USA.

出版信息

Genetics. 2012 Apr;190(4):1157-95. doi: 10.1534/genetics.111.128033. Epub 2011 Dec 29.

Abstract

A common need for microbial cells is the ability to respond to potentially toxic environmental insults. Here we review the progress in understanding the response of the yeast Saccharomyces cerevisiae to two important environmental stresses: heat shock and oxidative stress. Both of these stresses are fundamental challenges that microbes of all types will experience. The study of these environmental stress responses in S. cerevisiae has illuminated many of the features now viewed as central to our understanding of eukaryotic cell biology. Transcriptional activation plays an important role in driving the multifaceted reaction to elevated temperature and levels of reactive oxygen species. Advances provided by the development of whole genome analyses have led to an appreciation of the global reorganization of gene expression and its integration between different stress regimens. While the precise nature of the signal eliciting the heat shock response remains elusive, recent progress in the understanding of induction of the oxidative stress response is summarized here. Although these stress conditions represent ancient challenges to S. cerevisiae and other microbes, much remains to be learned about the mechanisms dedicated to dealing with these environmental parameters.

摘要

微生物细胞的一个共同需求是能够对潜在的有毒环境胁迫做出反应。在这里,我们回顾了对酵母酿酒酵母(Saccharomyces cerevisiae)对两种重要环境胁迫的反应的理解进展:热激和氧化应激。这两种应激都是所有类型的微生物都会经历的基本挑战。对这些环境应激反应的研究阐明了许多现在被认为是理解真核细胞生物学的核心特征。转录激活在驱动对高温和活性氧水平的多方面反应中起着重要作用。全基因组分析的发展提供的进展使人们能够了解基因表达的全局重排及其在不同应激方案之间的整合。虽然引发热激反应的确切信号性质仍然难以捉摸,但这里总结了对氧化应激反应诱导的理解的最新进展。尽管这些应激条件代表了酿酒酵母和其他微生物面临的古老挑战,但对于专门用于应对这些环境参数的机制,仍有许多需要了解。

相似文献

1
The response to heat shock and oxidative stress in Saccharomyces cerevisiae.
Genetics. 2012 Apr;190(4):1157-95. doi: 10.1534/genetics.111.128033. Epub 2011 Dec 29.
3
Regulation of thermotolerance by stress-induced transcription factors in Saccharomyces cerevisiae.
Eukaryot Cell. 2008 May;7(5):783-90. doi: 10.1128/EC.00029-08. Epub 2008 Mar 21.
8
Defining the Essential Function of Yeast Hsf1 Reveals a Compact Transcriptional Program for Maintaining Eukaryotic Proteostasis.
Mol Cell. 2016 Jul 7;63(1):60-71. doi: 10.1016/j.molcel.2016.05.014. Epub 2016 Jun 16.
9
tRNA thiolation links translation to stress responses in Saccharomyces cerevisiae.
Mol Biol Cell. 2015 Jan 15;26(2):270-82. doi: 10.1091/mbc.E14-06-1145. Epub 2014 Nov 12.

引用本文的文献

1
Dynamic proteomic changes and ultrastructural insights into 's parasitism of eggs.
Front Cell Infect Microbiol. 2025 Aug 20;15:1600620. doi: 10.3389/fcimb.2025.1600620. eCollection 2025.
3
Mechanisms and Strategies for Engineering Oxidative Stress Resistance in .
Chem Bio Eng. 2025 May 29;2(7):409-422. doi: 10.1021/cbe.5c00021. eCollection 2025 Jul 24.
4
Rim4-seeded stress granules connect temperature sensing to meiotic regulation.
Nat Commun. 2025 Jul 1;16(1):5566. doi: 10.1038/s41467-025-60645-0.
7
Trans-eQTL hotspots shape complex traits by modulating cellular states.
Cell Genom. 2025 May 14;5(5):100873. doi: 10.1016/j.xgen.2025.100873. Epub 2025 May 5.
8
Effect of bioactive peptides on heat stress-induced testiculopathies in mature rats: immunohistopathological evidence.
Vet Res Forum. 2025;16(2):106-116. doi: 10.30466/vrf.2024.2032033.4318. Epub 2025 Feb 15.
9
TOR and heat shock response pathways regulate peroxisome biogenesis during proteotoxic stress.
bioRxiv. 2025 Jan 2:2024.12.31.630809. doi: 10.1101/2024.12.31.630809.

本文引用的文献

1
Heat shock response in yeast involves changes in both transcription rates and mRNA stabilities.
PLoS One. 2011 Feb 25;6(2):e17272. doi: 10.1371/journal.pone.0017272.
2
Severe ethanol stress induces assembly of stress granules in Saccharomyces cerevisiae.
Yeast. 2011 May;28(5):339-47. doi: 10.1002/yea.1842. Epub 2011 Feb 22.
5
The metazoan Mediator co-activator complex as an integrative hub for transcriptional regulation.
Nat Rev Genet. 2010 Nov;11(11):761-72. doi: 10.1038/nrg2901. Epub 2010 Oct 13.
7
Activation of the heat shock transcription factor Hsf1 is essential for the full virulence of the fungal pathogen Candida albicans.
Fungal Genet Biol. 2011 Mar;48(3):297-305. doi: 10.1016/j.fgb.2010.08.010. Epub 2010 Sep 9.
9
The HSP70 chaperone machinery: J proteins as drivers of functional specificity.
Nat Rev Mol Cell Biol. 2010 Aug;11(8):579-92. doi: 10.1038/nrm2941.
10
Heat shock factors: integrators of cell stress, development and lifespan.
Nat Rev Mol Cell Biol. 2010 Aug;11(8):545-55. doi: 10.1038/nrm2938. Epub 2010 Jul 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验