Suppr超能文献

突触前HCN通道调节囊泡谷氨酸转运。

Presynaptic HCN channels regulate vesicular glutamate transport.

作者信息

Huang Hai, Trussell Laurence O

机构信息

Oregon Hearing Research Center & Vollum Institute, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, L335A, Portland, OR 97239, USA; Department of Cell and Molecular Biology, Tulane University, 2000 Percival Stern Hall, 6400 Freret Street, New Orleans, LA 70118, USA.

Oregon Hearing Research Center & Vollum Institute, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, L335A, Portland, OR 97239, USA.

出版信息

Neuron. 2014 Oct 22;84(2):340-6. doi: 10.1016/j.neuron.2014.08.046. Epub 2014 Sep 25.

Abstract

The amount of neurotransmitter stored in synaptic vesicles determines postsynaptic quantal size and thus the strength of synaptic transmission. However, little is known about regulation of vesicular neurotransmitter uptake. In recordings from the calyx of Held, a giant mammalian glutamatergic synapse, we found that changes in presynaptic Na(+) concentration above and below a resting value of 13 mM regulated vesicular glutamate uptake, consistent with activation of a vesicular monovalent cation Na(+)(K(+))/H(+) exchanger. Na(+) flux through presynaptic plasma membrane hyperpolarization-activated cyclic nucleotide-gated (HCN) channels enhanced presynaptic Na(+) concentration and thus controlled postsynaptic quantal size. Our results indicate that a plasma membrane ion channel controls synaptic strength by modulating vesicular neurotransmitter uptake through a Na(+)-dependent process.

摘要

储存在突触小泡中的神经递质数量决定了突触后量子大小,进而决定了突触传递的强度。然而,关于小泡神经递质摄取的调节却知之甚少。在对Held壶腹(一种巨大的哺乳动物谷氨酸能突触)的记录中,我们发现,突触前Na⁺浓度在13 mM的静息值上下发生变化时,会调节小泡谷氨酸摄取,这与小泡单价阳离子Na⁺(K⁺)/H⁺交换体的激活相一致。通过突触前质膜超极化激活的环核苷酸门控(HCN)通道的Na⁺通量会提高突触前Na⁺浓度,从而控制突触后量子大小。我们的结果表明,质膜离子通道通过一个依赖Na⁺的过程调节小泡神经递质摄取,从而控制突触强度。

相似文献

1
Presynaptic HCN channels regulate vesicular glutamate transport.
Neuron. 2014 Oct 22;84(2):340-6. doi: 10.1016/j.neuron.2014.08.046. Epub 2014 Sep 25.
2
Spike Activity Regulates Vesicle Filling at a Glutamatergic Synapse.
J Neurosci. 2020 Jun 24;40(26):4972-4980. doi: 10.1523/JNEUROSCI.2945-19.2020. Epub 2020 May 19.
4
7
Inducible presynaptic glutamine transport supports glutamatergic transmission at the calyx of Held synapse.
J Neurosci. 2013 Oct 30;33(44):17429-34. doi: 10.1523/JNEUROSCI.1466-13.2013.
8
KCNQ5 channels control resting properties and release probability of a synapse.
Nat Neurosci. 2011 Jun 12;14(7):840-7. doi: 10.1038/nn.2830.
9
Presynaptic regulation of quantal size by the vesicular glutamate transporter VGLUT1.
J Neurosci. 2005 Jun 29;25(26):6221-34. doi: 10.1523/JNEUROSCI.3003-04.2005.
10
Vesicular glutamate filling and AMPA receptor occupancy at the calyx of Held synapse of immature rats.
J Physiol. 2009 May 15;587(Pt 10):2327-39. doi: 10.1113/jphysiol.2008.167759. Epub 2009 Mar 30.

引用本文的文献

3
HCN channel inhibitor induces ketamine-like rapid and sustained antidepressant effects in chronic social defeat stress model.
Neurobiol Stress. 2023 Aug 19;26:100565. doi: 10.1016/j.ynstr.2023.100565. eCollection 2023 Sep.
4
α-Adrenergic modulation of I in adult-born granule cells in the olfactory bulb.
Front Cell Neurosci. 2023 Jan 6;16:1055569. doi: 10.3389/fncel.2022.1055569. eCollection 2022.
5
Targeting Affective Mood Disorders With Ketamine to Prevent Chronic Postsurgical Pain.
Front Pain Res (Lausanne). 2022 Jun 27;3:872696. doi: 10.3389/fpain.2022.872696. eCollection 2022.
6
KCNQ Channels Enable Reliable Presynaptic Spiking and Synaptic Transmission at High Frequency.
J Neurosci. 2022 Apr 20;42(16):3305-3315. doi: 10.1523/JNEUROSCI.0363-20.2022. Epub 2022 Mar 7.
7
Physiological Perspectives on Molecular Mechanisms and Regulation of Vesicular Glutamate Transport: Lessons From Calyx of Held Synapses.
Front Cell Neurosci. 2022 Jan 13;15:811892. doi: 10.3389/fncel.2021.811892. eCollection 2021.
8
A Novel Neuron-Specific Regulator of the V-ATPase in .
eNeuro. 2021 Oct 22;8(5). doi: 10.1523/ENEURO.0193-21.2021. Print 2021 Sep-Oct.
10
Non-canonical Molecular Targets for Novel Analgesics: Intracellular Calcium and HCN Channels.
Curr Neuropharmacol. 2021;19(11):1937-1951. doi: 10.2174/1570159X19666210119153047.

本文引用的文献

1
Kinetics of synaptic vesicle refilling with neurotransmitter glutamate.
Neuron. 2012 Nov 8;76(3):511-7. doi: 10.1016/j.neuron.2012.08.013.
2
Two-photon sodium imaging in dendritic spines.
Cold Spring Harb Protoc. 2012 Nov 1;2012(11):1161-5. doi: 10.1101/pdb.prot072074.
3
Neurotransmitter corelease: mechanism and physiological role.
Annu Rev Physiol. 2012;74:225-43. doi: 10.1146/annurev-physiol-020911-153315. Epub 2011 Oct 31.
4
5
KCNQ5 channels control resting properties and release probability of a synapse.
Nat Neurosci. 2011 Jun 12;14(7):840-7. doi: 10.1038/nn.2830.
6
Presynaptic HCN1 channels regulate Cav3.2 activity and neurotransmission at select cortical synapses.
Nat Neurosci. 2011 Apr;14(4):478-86. doi: 10.1038/nn.2757. Epub 2011 Feb 27.
8
Control of presynaptic function by a persistent Na(+) current.
Neuron. 2008 Dec 26;60(6):975-9. doi: 10.1016/j.neuron.2008.10.052.
10
Modulation of transmitter release by presynaptic resting potential and background calcium levels.
Neuron. 2005 Oct 6;48(1):109-21. doi: 10.1016/j.neuron.2005.08.038.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验