Suppr超能文献

用离子液体从龙舌兰微纤维制备自增强纤维素复合膜及其性能。

Preparation and properties of self-reinforced cellulose composite films from Agave microfibrils using an ionic liquid.

机构信息

Department of Chemical Engineering Technology, Doornfontein Campus, University of Johannesburg, P.O. Box 17011, Johannesburg 2028, South Africa.

CAS Key Lab of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, China.

出版信息

Carbohydr Polym. 2014 Dec 19;114:537-545. doi: 10.1016/j.carbpol.2014.08.054. Epub 2014 Aug 30.

Abstract

The applications of natural fibers and their microfibrils are increasing rapidly due to their environment benefits, specific strength properties and renewability. In the present work, we successfully extracted cellulose microfibrils from Agave natural fibers by chemical method. The extracted microfibrils were characterized by chemical analysis. The cellulose microfibrils were found to dissolve in an ionic liquid 1-allyl-3-methylimidazolium chloride (AmimCl) to larger extent along with little quantity of undissolved microfibrils. Using this solution, the self-reinforced regenerated cellulose composite films were prepared. The raw fiber, extracted cellulose microfibrils and regenerated cellulose composite films were characterized by FTIR, (13)C CP-MAS NMR, XRD, TGA and SEM techniques. The average tensile strength, modulus and elongation at break of the self-reinforced cellulose composite films were found to be 135 MPa, 8150 MPa and 3.2%, respectively. The high values of tensile strength and modulus were attributed to the self-reinforcement of Agave fibers in their generated matrix. These self-reinforced cellulose biodegradable composite films prepared from renewable source can find applications in packaging field.

摘要

由于天然纤维及其微纤维具有环境效益、特定的强度性能和可再生性,其应用正在迅速增加。在本工作中,我们成功地通过化学方法从龙舌兰天然纤维中提取出纤维素微纤维。通过化学分析对提取的微纤维进行了表征。结果发现,纤维素微纤维在离子液体 1-烯丙基-3-甲基咪唑氯化物(AmimCl)中能够更大程度地溶解,同时有少量未溶解的微纤维。利用该溶液,制备了自增强再生纤维素复合膜。采用 FTIR、(13)C CP-MAS NMR、XRD、TGA 和 SEM 技术对原纤维、提取的纤维素微纤维和再生纤维素复合膜进行了表征。自增强纤维素复合膜的平均拉伸强度、模量和断裂伸长率分别为 135 MPa、8150 MPa 和 3.2%。高拉伸强度和模量值归因于在生成的基质中龙舌兰纤维的自增强。这些由可再生资源制备的自增强纤维素可生物降解复合材料薄膜可在包装领域得到应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验