Suppr超能文献

一种基于胰腺β细胞生理学的仿生葡萄糖控制器。

A bio-inspired glucose controller based on pancreatic β-cell physiology.

作者信息

Herrero Pau, Georgiou Pantelis, Oliver Nick, Johnston Desmond G, Toumazou Christofer

机构信息

Center for Bio-Inspired Technology, Institute of Biomedical Engineering, Imperial College London, London, United Kingdom.

出版信息

J Diabetes Sci Technol. 2012 May 1;6(3):606-16. doi: 10.1177/193229681200600316.

Abstract

INTRODUCTION

Control algorithms for closed-loop insulin delivery in type 1 diabetes have been mainly based on control engineering or artificial intelligence techniques. These, however, are not based on the physiology of the pancreas but seek to implement engineering solutions to biology. Developments in mathematical models of the β-cell physiology of the pancreas have described the glucose-induced insulin release from pancreatic β cells at a molecular level. This has facilitated development of a new class of bio-inspired glucose control algorithms that replicate the functionality of the biological pancreas. However, technologies for sensing glucose levels and delivering insulin use the subcutaneous route, which is nonphysiological and introduces some challenges. In this article, a novel glucose controller is presented as part of a bio-inspired artificial pancreas.

METHODS

A mathematical model of β-cell physiology was used as the core of the proposed controller. In order to deal with delays and lack of accuracy introduced by the subcutaneous route, insulin feedback and a gain scheduling strategy were employed. A United States Food and Drug Administration-accepted type 1 diabetes mellitus virtual population was used to validate the presented controller.

RESULTS

Premeal and postmeal mean ± standard deviation blood glucose levels for the adult and adolescent populations were well within the target range set for the controller [(70, 180) mg/dl], with a percent time in range of 92.8 ± 7.3% for the adults and 83.5 ± 14% for the adolescents.

CONCLUSIONS

This article shows for the first time very good glucose control in a virtual population with type 1 diabetes mellitus using a controller based on a subcellular β-cell model.

摘要

引言

1型糖尿病闭环胰岛素给药的控制算法主要基于控制工程或人工智能技术。然而,这些算法并非基于胰腺的生理学原理,而是试图为生物学问题提供工程解决方案。胰腺β细胞生理学数学模型的发展在分子水平上描述了葡萄糖诱导的胰腺β细胞胰岛素释放过程。这推动了一类新型生物启发式葡萄糖控制算法的开发,这类算法可复制生物胰腺的功能。然而,葡萄糖水平传感和胰岛素给药技术采用皮下途径,这不符合生理情况且带来了一些挑战。在本文中,提出了一种新型葡萄糖控制器,作为生物启发式人工胰腺的一部分。

方法

将β细胞生理学数学模型用作所提出控制器的核心。为了应对皮下途径带来的延迟和准确性不足问题,采用了胰岛素反馈和增益调度策略。使用美国食品药品监督管理局认可的1型糖尿病虚拟人群来验证所提出的控制器。

结果

成人和青少年人群餐前和餐后血糖平均水平±标准差均在为控制器设定的目标范围内[(70, 180)mg/dl],成人血糖水平在目标范围内的时间百分比为92.8±7.3%,青少年为83.5±14%。

结论

本文首次展示了使用基于亚细胞β细胞模型的控制器,在1型糖尿病虚拟人群中实现了非常良好的血糖控制。

相似文献

4
An integrated multivariable artificial pancreas control system.一种集成多变量人工胰腺控制系统。
J Diabetes Sci Technol. 2014 May;8(3):498-507. doi: 10.1177/1932296814524862. Epub 2014 Apr 7.
6
Control to range for diabetes: functionality and modular architecture.糖尿病控制范围:功能与模块化架构。
J Diabetes Sci Technol. 2009 Sep 1;3(5):1058-65. doi: 10.1177/193229680900300509.

引用本文的文献

3
Dilated Recurrent Neural Networks for Glucose Forecasting in Type 1 Diabetes.用于1型糖尿病血糖预测的扩张递归神经网络
J Healthc Inform Res. 2020 Apr 12;4(3):308-324. doi: 10.1007/s41666-020-00068-2. eCollection 2020 Sep.
8
A coordinated control strategy for insulin and glucagon delivery in type 1 diabetes.1型糖尿病中胰岛素和胰高血糖素递送的协调控制策略。
Comput Methods Biomech Biomed Engin. 2017 Oct;20(13):1474-1482. doi: 10.1080/10255842.2017.1378352. Epub 2017 Sep 20.

本文引用的文献

7
Cellular modeling: insight into oral minimal models of insulin secretion.细胞模型:对胰岛素分泌口腔最小模型的深入了解。
Am J Physiol Endocrinol Metab. 2010 Mar;298(3):E597-601. doi: 10.1152/ajpendo.00670.2009. Epub 2009 Dec 15.
9
Statistical tools to analyze continuous glucose monitor data.分析连续血糖监测数据的统计工具。
Diabetes Technol Ther. 2009 Jun;11 Suppl 1(Suppl 1):S45-54. doi: 10.1089/dia.2008.0138.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验