Couturier Jérémy, Przybyla-Toscano Jonathan, Roret Thomas, Didierjean Claude, Rouhier Nicolas
Université de Lorraine, UMR 1136 Interactions Arbres Microorganismes, F-54500 Vandœuvre-lès-Nancy, France; INRA, UMR 1136 Interactions Arbres Microorganismes, F-54280 Champenoux, France.
Université de Lorraine, UMR 7036 CRM2, BioMod group, 54506 Vandœuvre-lès-Nancy, France; CNRS, UMR 7036 CRM2, BioMod group, 54506 Vandœuvre-lès-Nancy, France.
Biochim Biophys Acta. 2015 Jun;1853(6):1513-27. doi: 10.1016/j.bbamcr.2014.09.018. Epub 2014 Sep 28.
Glutaredoxins (Grxs) are major oxidoreductases involved in the reduction of glutathionylated proteins. Owing to the capacity of several class I Grxs and likely all class II Grxs to incorporate iron-sulfur (Fe-S) clusters, they are also linked to iron metabolism. Most Grxs bind [2Fe-2S] clusters which are oxidatively- and reductively-labile and have identical ligation, involving notably external glutathione. However, subtle differences in the structural organization explain that class II Fe-S Grxs, having more labile and solvent-exposed clusters, can accept Fe-S clusters and transfer them to client proteins, whereas class I Fe-S Grxs usually do not. From the observed glutathione disulfide-mediated Fe-S cluster degradation, the current view is that the more stable Fe-S clusters found in class I Fe-S Grxs might constitute a sensor of oxidative stress conditions by modulating their activity. Indeed, in response to an oxidative signal, inactive holoforms i.e., without disulfide reductase activity, should be converted to active apoforms. Among class II Fe-S Grxs, monodomain Grxs likely serve as carrier proteins for the delivery of preassembled Fe-S clusters to acceptor proteins in organelles. Another proposed function is the repair of Fe-S clusters. From their cytoplasmic and/or nuclear localization, multidomain Grxs function in signalling pathways. In particular, they regulate iron homeostasis in yeast species by modulating the activity of transcription factors and eventually forming heterocomplexes with BolA-like proteins in response to the cellular iron status. We provide an overview of the biochemical and structural properties of Fe-S cluster-loaded Grxs in relation to their hypothetical or confirmed associated functions. This article is part of a Special Issue entitled: Fe/S proteins: Analysis, structure, function, biogenesis and diseases.
谷氧还蛋白(Grxs)是参与谷胱甘肽化蛋白质还原的主要氧化还原酶。由于几种I类谷氧还蛋白以及可能所有II类谷氧还蛋白都具有结合铁硫(Fe-S)簇的能力,它们也与铁代谢相关。大多数谷氧还蛋白结合[2Fe-2S]簇,这些簇在氧化和还原方面都不稳定,并且具有相同的连接方式,特别是涉及外部谷胱甘肽。然而,结构组织上的细微差异解释了为什么II类含Fe-S谷氧还蛋白具有更不稳定且暴露于溶剂中的簇,能够接受Fe-S簇并将其转移至底物蛋白,而I类含Fe-S谷氧还蛋白通常则不能。基于观察到的谷胱甘肽二硫化物介导的Fe-S簇降解,目前的观点是,I类含Fe-S谷氧还蛋白中发现的更稳定的Fe-S簇可能通过调节其活性构成氧化应激条件的传感器。事实上,响应氧化信号时,无活性的全酶形式(即没有二硫化物还原酶活性)应转化为有活性的脱辅基形式。在II类含Fe-S谷氧还蛋白中,单结构域谷氧还蛋白可能作为载体蛋白,将预组装的Fe-S簇递送至细胞器中的受体蛋白。另一个提出的功能是Fe-S簇的修复。从它们的细胞质和/或细胞核定位来看,多结构域谷氧还蛋白在信号通路中发挥作用。特别是,它们通过调节转录因子的活性并最终根据细胞铁状态与BolA样蛋白形成异源复合物来调节酵母物种中的铁稳态。我们概述了与它们假设的或已证实的相关功能有关的含Fe-S簇谷氧还蛋白的生化和结构特性。本文是名为:Fe/S蛋白:分析、结构、功能、生物合成和疾病的特刊的一部分。