Suppr超能文献

纤维素纳米材料的肺生物耐久性和自由基产生

Lung biodurability and free radical production of cellulose nanomaterials.

作者信息

Stefaniak Aleksandr B, Seehra Mohindar S, Fix Natalie R, Leonard Stephen S

机构信息

Division of Respiratory Diseases Studies, National Institute for Occupational Safety and Health , Morgantown, WV , USA .

出版信息

Inhal Toxicol. 2014 Oct;26(12):733-49. doi: 10.3109/08958378.2014.948650.

Abstract

Abstract The potential applications of cellulose nanomaterials in advanced composites and biomedicine makes it imperative to understand their pulmonary exposure to human health. Here, we report the results on the biodurability of three cellulose nanocrystal (CNC), two cellulose nanofibril (CNF) and a benchmark cellulose microcrystal (CMC) when exposed to artificial lung airway lining fluid (SUF, pH 7.3) for up to 7 days and alveolar macrophage phagolysosomal fluid (PSF, pH 4.5) for up to 9 months. X-ray diffraction analysis was used to monitor biodurability and thermogravimetry, surface area, hydrodynamic diameter, zeta potential and free radical generation capacity of the samples were determined (in vitro cell-free and RAW 264.7 cell line models). The CMC showed no measurable changes in crystallinity (x(CR)) or crystallite size D in either SUF or PSF. For one CNC, a slight decrease in x(CR) and D in SUF was observed. In acidic PSF, a slight increase in x(CR) with exposure time was observed, possibly due to dissolution of the amorphous component. In a cell-free reaction with H₂O₂, radicals were observed; the CNCs and a CNF generated significantly more ·OH radicals than the CMC (p < 0.05). The ·OH radical production correlates with particle decomposition temperature and is explained by the higher surface area to volume ratio of the CNCs. Based on their biodurability, mechanical clearance would be the primary mechanism for lung clearance of cellulose materials. The production of ·OH radicals indicates the need for additional studies to characterize the potential inhalation hazards of cellulose.

摘要

摘要 纤维素纳米材料在先进复合材料和生物医学中的潜在应用使得了解其对人体健康的肺部暴露情况变得至关重要。在此,我们报告了三种纤维素纳米晶体(CNC)、两种纤维素纳米纤维(CNF)和一种基准纤维素微晶(CMC)在暴露于人工肺气道内衬液(SUF,pH 7.3)长达7天以及肺泡巨噬细胞吞噬溶酶体液(PSF,pH 4.5)长达9个月时的生物耐久性结果。采用X射线衍射分析来监测生物耐久性,并测定了样品的热重分析、表面积、流体动力学直径、zeta电位和自由基生成能力(体外无细胞和RAW 264.7细胞系模型)。CMC在SUF或PSF中结晶度(x(CR))或微晶尺寸D均未出现可测量的变化。对于一种CNC,在SUF中观察到x(CR)和D略有下降。在酸性PSF中,观察到x(CR)随暴露时间略有增加,这可能是由于无定形成分的溶解。在与H₂O₂的无细胞反应中,观察到了自由基;CNC和一种CNF产生的·OH自由基明显多于CMC(p < 0.05)。·OH自由基的产生与颗粒分解温度相关,并且可以通过CNC较高的表面积与体积比来解释。基于它们的生物耐久性,机械清除将是纤维素材料肺部清除的主要机制。·OH自由基的产生表明需要进行更多研究来表征纤维素潜在的吸入危害。

相似文献

1
Lung biodurability and free radical production of cellulose nanomaterials.
Inhal Toxicol. 2014 Oct;26(12):733-49. doi: 10.3109/08958378.2014.948650.
2
Gender differences in murine pulmonary responses elicited by cellulose nanocrystals.
Part Fibre Toxicol. 2016 Jun 8;13(1):28. doi: 10.1186/s12989-016-0140-x.
4
Pulmonary inflammatory responses and retention dynamics of cellulose nanofibrils.
Toxicology. 2025 Feb;511:154038. doi: 10.1016/j.tox.2024.154038. Epub 2024 Dec 22.
5
Investigating the interaction of cellulose nanofibers derived from cotton with a sophisticated 3D human lung cell coculture.
Biomacromolecules. 2011 Oct 10;12(10):3666-73. doi: 10.1021/bm200865j. Epub 2011 Sep 6.
6
Lung toxicity and gene expression changes in response to whole-body inhalation exposure to cellulose nanocrystal in rats.
Inhal Toxicol. 2021 Feb;33(2):66-80. doi: 10.1080/08958378.2021.1884320. Epub 2021 Feb 18.
7
An in vitro testing strategy towards mimicking the inhalation of high aspect ratio nanoparticles.
Part Fibre Toxicol. 2014 Sep 23;11:40. doi: 10.1186/s12989-014-0040-x.
9
Assessing toxicity of fine and nanoparticles: comparing in vitro measurements to in vivo pulmonary toxicity profiles.
Toxicol Sci. 2007 May;97(1):163-80. doi: 10.1093/toxsci/kfm018. Epub 2007 Feb 14.

引用本文的文献

1
Environmental impact and sustainability of nanocellulose-based nitrated polymers in propellants.
RSC Adv. 2025 Jul 10;15(30):24167-24191. doi: 10.1039/d5ra02169c.
5
Aerogels are not regulated as nanomaterials, but can be assessed by tiered testing and grouping strategies for nanomaterials.
Nanoscale Adv. 2021 May 19;3(13):3881-3893. doi: 10.1039/d1na00044f. eCollection 2021 Jun 30.
6
Effect of Surface Modification on the Pulmonary and Systemic Toxicity of Cellulose Nanofibrils.
Biomacromolecules. 2022 Jul 11;23(7):2752-2766. doi: 10.1021/acs.biomac.2c00072. Epub 2022 Jun 9.
8
Nanocelluloses - Nanotoxicology, Safety Aspects and 3D Bioprinting.
Adv Exp Med Biol. 2022;1357:155-177. doi: 10.1007/978-3-030-88071-2_7.
9
Nanocelluloses: Production, Characterization and Market.
Adv Exp Med Biol. 2022;1357:129-151. doi: 10.1007/978-3-030-88071-2_6.

本文引用的文献

3
Thermal and mechanical properties of bio-nanocomposites reinforced by Luffa cylindrica cellulose nanocrystals.
Carbohydr Polym. 2013 Jan 16;91(2):711-7. doi: 10.1016/j.carbpol.2012.08.057. Epub 2012 Aug 24.
4
The biologically effective dose in inhalation nanotoxicology.
Acc Chem Res. 2013 Mar 19;46(3):723-32. doi: 10.1021/ar300092y. Epub 2012 Sep 24.
5
High performance cellulose nanocomposites: comparing the reinforcing ability of bacterial cellulose and nanofibrillated cellulose.
ACS Appl Mater Interfaces. 2012 Aug;4(8):4078-86. doi: 10.1021/am300852a. Epub 2012 Aug 9.
6
Dispersibility in water of dried nanocrystalline cellulose.
Biomacromolecules. 2012 May 14;13(5):1486-94. doi: 10.1021/bm300191k. Epub 2012 Apr 6.
7
Probing inhibitory effects of nanocrystalline cellulose: inhibition versus surface charge.
Nanoscale. 2012 Feb 21;4(4):1373-9. doi: 10.1039/c2nr11886f. Epub 2012 Jan 18.
8
Strong and tough cellulose nanopaper with high specific surface area and porosity.
Biomacromolecules. 2011 Oct 10;12(10):3638-44. doi: 10.1021/bm2008907. Epub 2011 Sep 9.
9
Cellulose nanomaterials review: structure, properties and nanocomposites.
Chem Soc Rev. 2011 Jul;40(7):3941-94. doi: 10.1039/c0cs00108b. Epub 2011 May 12.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验