Song Dong, Chan Rosa H M, Robinson Brian S, Marmarelis Vasilis Z, Opris Ioan, Hampson Robert E, Deadwyler Sam A, Berger Theodore W
Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA.
Department of Electronic Engineering, City University of Hong Kong, Hong Kong, China.
J Neurosci Methods. 2015 Apr 15;244:123-35. doi: 10.1016/j.jneumeth.2014.09.023. Epub 2014 Oct 2.
This paper presents a systems identification approach for studying the long-term synaptic plasticity using natural spiking activities. This approach consists of three modeling steps. First, a multi-input, single-output (MISO), nonlinear dynamical spiking neuron model is formulated to estimate and represent the synaptic strength in means of functional connectivity between input and output neurons. Second, this MISO model is extended to a nonstationary form to track the time-varying properties of the synaptic strength. Finally, a Volterra modeling method is used to extract the synaptic learning rule, e.g., spike-timing-dependent plasticity, for the explanation of the input-output nonstationarity as the consequence of the past input-output spiking patterns. This framework is developed to study the underlying mechanisms of learning and memory formation in behaving animals, and may serve as the computational basis for building the next-generation adaptive cortical prostheses.
本文提出了一种利用自然脉冲活动研究长期突触可塑性的系统识别方法。该方法包括三个建模步骤。首先,构建一个多输入单输出(MISO)非线性动态脉冲神经元模型,以通过输入和输出神经元之间的功能连接来估计和表示突触强度。其次,将该MISO模型扩展为非平稳形式,以跟踪突触强度的时变特性。最后,使用沃尔泰拉建模方法提取突触学习规则,例如脉冲时间依赖可塑性,以解释输入-输出非平稳性是过去输入-输出脉冲模式的结果。开发这个框架是为了研究行为动物学习和记忆形成的潜在机制,并且可以作为构建下一代自适应皮层假体的计算基础。