Suppr超能文献

利用非线性动力学建模从尖峰活动中识别功能性突触可塑性。

Identification of functional synaptic plasticity from spiking activities using nonlinear dynamical modeling.

作者信息

Song Dong, Chan Rosa H M, Robinson Brian S, Marmarelis Vasilis Z, Opris Ioan, Hampson Robert E, Deadwyler Sam A, Berger Theodore W

机构信息

Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA.

Department of Electronic Engineering, City University of Hong Kong, Hong Kong, China.

出版信息

J Neurosci Methods. 2015 Apr 15;244:123-35. doi: 10.1016/j.jneumeth.2014.09.023. Epub 2014 Oct 2.

Abstract

This paper presents a systems identification approach for studying the long-term synaptic plasticity using natural spiking activities. This approach consists of three modeling steps. First, a multi-input, single-output (MISO), nonlinear dynamical spiking neuron model is formulated to estimate and represent the synaptic strength in means of functional connectivity between input and output neurons. Second, this MISO model is extended to a nonstationary form to track the time-varying properties of the synaptic strength. Finally, a Volterra modeling method is used to extract the synaptic learning rule, e.g., spike-timing-dependent plasticity, for the explanation of the input-output nonstationarity as the consequence of the past input-output spiking patterns. This framework is developed to study the underlying mechanisms of learning and memory formation in behaving animals, and may serve as the computational basis for building the next-generation adaptive cortical prostheses.

摘要

本文提出了一种利用自然脉冲活动研究长期突触可塑性的系统识别方法。该方法包括三个建模步骤。首先,构建一个多输入单输出(MISO)非线性动态脉冲神经元模型,以通过输入和输出神经元之间的功能连接来估计和表示突触强度。其次,将该MISO模型扩展为非平稳形式,以跟踪突触强度的时变特性。最后,使用沃尔泰拉建模方法提取突触学习规则,例如脉冲时间依赖可塑性,以解释输入-输出非平稳性是过去输入-输出脉冲模式的结果。开发这个框架是为了研究行为动物学习和记忆形成的潜在机制,并且可以作为构建下一代自适应皮层假体的计算基础。

相似文献

1
Identification of functional synaptic plasticity from spiking activities using nonlinear dynamical modeling.
J Neurosci Methods. 2015 Apr 15;244:123-35. doi: 10.1016/j.jneumeth.2014.09.023. Epub 2014 Oct 2.
2
Nonlinear dynamic modeling of spike train transformations for hippocampal-cortical prostheses.
IEEE Trans Biomed Eng. 2007 Jun;54(6 Pt 1):1053-66. doi: 10.1109/TBME.2007.891948.
3
Laguerre-Volterra identification of spike-timing-dependent plasticity from spiking activity: a simulation study.
Annu Int Conf IEEE Eng Med Biol Soc. 2013;2013:5578-81. doi: 10.1109/EMBC.2013.6610814.
4
Generalized Volterra kernel model identification of spike-timing-dependent plasticity from simulated spiking activity.
Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:6585-8. doi: 10.1109/EMBC.2014.6945137.
5
Inhibitory synaptic plasticity regulates pyramidal neuron spiking in the rodent hippocampus.
Neuroscience. 2008 Jul 31;155(1):64-75. doi: 10.1016/j.neuroscience.2008.05.009. Epub 2008 May 21.
6
An STDP training algorithm for a spiking neural network with dynamic threshold neurons.
Int J Neural Syst. 2010 Dec;20(6):463-80. doi: 10.1142/S0129065710002553.
7
Tracking temporal evolution of nonlinear dynamics in hippocampus using time-varying volterra kernels.
Annu Int Conf IEEE Eng Med Biol Soc. 2008;2008:4996-9. doi: 10.1109/IEMBS.2008.4650336.
8
Bayesian spiking neurons II: learning.
Neural Comput. 2008 Jan;20(1):118-45. doi: 10.1162/neco.2008.20.1.118.
9
What can a neuron learn with spike-timing-dependent plasticity?
Neural Comput. 2005 Nov;17(11):2337-82. doi: 10.1162/0899766054796888.
10
From spiking neurons to rate models: a cascade model as an approximation to spiking neuron models with refractoriness.
Phys Rev E Stat Nonlin Soft Matter Phys. 2006 May;73(5 Pt 1):051908. doi: 10.1103/PhysRevE.73.051908. Epub 2006 May 16.

引用本文的文献

1
A Computational Model of Working Memory Based on Spike-Timing-Dependent Plasticity.
Front Comput Neurosci. 2021 Apr 21;15:630999. doi: 10.3389/fncom.2021.630999. eCollection 2021.
2
A 512-Channel Multi-Layer Polymer-Based Neural Probe Array.
J Microelectromech Syst. 2020 Oct;29(5):1054-1058. doi: 10.1109/jmems.2020.2999550. Epub 2020 Jun 11.
5
Tracking recurrence of correlation structure in neuronal recordings.
J Neurosci Methods. 2017 Jan 1;275:1-9. doi: 10.1016/j.jneumeth.2016.10.009. Epub 2016 Oct 13.

本文引用的文献

1
Donor/recipient enhancement of memory in rat hippocampus.
Front Syst Neurosci. 2013 Dec 26;7:120. doi: 10.3389/fnsys.2013.00120. eCollection 2013.
2
Facilitation of memory encoding in primate hippocampus by a neuroprosthesis that promotes task-specific neural firing.
J Neural Eng. 2013 Dec;10(6):066013. doi: 10.1088/1741-2560/10/6/066013. Epub 2013 Nov 12.
3
Identification of sparse neural functional connectivity using penalized likelihood estimation and basis functions.
J Comput Neurosci. 2013 Dec;35(3):335-57. doi: 10.1007/s10827-013-0455-7. Epub 2013 May 15.
6
The spike-timing dependence of plasticity.
Neuron. 2012 Aug 23;75(4):556-71. doi: 10.1016/j.neuron.2012.08.001.
7
Closing the loop for memory prosthesis: detecting the role of hippocampal neural ensembles using nonlinear models.
IEEE Trans Neural Syst Rehabil Eng. 2012 Jul;20(4):510-25. doi: 10.1109/TNSRE.2012.2190942. Epub 2012 Apr 6.
8
A hippocampal cognitive prosthesis: multi-input, multi-output nonlinear modeling and VLSI implementation.
IEEE Trans Neural Syst Rehabil Eng. 2012 Mar;20(2):198-211. doi: 10.1109/TNSRE.2012.2189133.
9
A nonlinear model for hippocampal cognitive prosthesis: memory facilitation by hippocampal ensemble stimulation.
IEEE Trans Neural Syst Rehabil Eng. 2012 Mar;20(2):184-97. doi: 10.1109/TNSRE.2012.2189163.
10
An L₁-regularized logistic model for detecting short-term neuronal interactions.
J Comput Neurosci. 2012 Jun;32(3):479-97. doi: 10.1007/s10827-011-0365-5. Epub 2011 Oct 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验