Suppr超能文献

利用非线性动力学建模从尖峰活动中识别功能性突触可塑性。

Identification of functional synaptic plasticity from spiking activities using nonlinear dynamical modeling.

作者信息

Song Dong, Chan Rosa H M, Robinson Brian S, Marmarelis Vasilis Z, Opris Ioan, Hampson Robert E, Deadwyler Sam A, Berger Theodore W

机构信息

Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA.

Department of Electronic Engineering, City University of Hong Kong, Hong Kong, China.

出版信息

J Neurosci Methods. 2015 Apr 15;244:123-35. doi: 10.1016/j.jneumeth.2014.09.023. Epub 2014 Oct 2.

Abstract

This paper presents a systems identification approach for studying the long-term synaptic plasticity using natural spiking activities. This approach consists of three modeling steps. First, a multi-input, single-output (MISO), nonlinear dynamical spiking neuron model is formulated to estimate and represent the synaptic strength in means of functional connectivity between input and output neurons. Second, this MISO model is extended to a nonstationary form to track the time-varying properties of the synaptic strength. Finally, a Volterra modeling method is used to extract the synaptic learning rule, e.g., spike-timing-dependent plasticity, for the explanation of the input-output nonstationarity as the consequence of the past input-output spiking patterns. This framework is developed to study the underlying mechanisms of learning and memory formation in behaving animals, and may serve as the computational basis for building the next-generation adaptive cortical prostheses.

摘要

本文提出了一种利用自然脉冲活动研究长期突触可塑性的系统识别方法。该方法包括三个建模步骤。首先,构建一个多输入单输出(MISO)非线性动态脉冲神经元模型,以通过输入和输出神经元之间的功能连接来估计和表示突触强度。其次,将该MISO模型扩展为非平稳形式,以跟踪突触强度的时变特性。最后,使用沃尔泰拉建模方法提取突触学习规则,例如脉冲时间依赖可塑性,以解释输入-输出非平稳性是过去输入-输出脉冲模式的结果。开发这个框架是为了研究行为动物学习和记忆形成的潜在机制,并且可以作为构建下一代自适应皮层假体的计算基础。

相似文献

8
Bayesian spiking neurons II: learning.贝叶斯脉冲神经元II:学习
Neural Comput. 2008 Jan;20(1):118-45. doi: 10.1162/neco.2008.20.1.118.

引用本文的文献

2
A 512-Channel Multi-Layer Polymer-Based Neural Probe Array.一种基于聚合物的512通道多层神经探针阵列。
J Microelectromech Syst. 2020 Oct;29(5):1054-1058. doi: 10.1109/jmems.2020.2999550. Epub 2020 Jun 11.
5
Tracking recurrence of correlation structure in neuronal recordings.追踪神经元记录中相关结构的复发情况。
J Neurosci Methods. 2017 Jan 1;275:1-9. doi: 10.1016/j.jneumeth.2016.10.009. Epub 2016 Oct 13.

本文引用的文献

1
Donor/recipient enhancement of memory in rat hippocampus.供体/受体增强大鼠海马体记忆。
Front Syst Neurosci. 2013 Dec 26;7:120. doi: 10.3389/fnsys.2013.00120. eCollection 2013.
6
The spike-timing dependence of plasticity.突触传递的时间依赖性可塑性。
Neuron. 2012 Aug 23;75(4):556-71. doi: 10.1016/j.neuron.2012.08.001.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验