Suppr超能文献

纤维素合酶在大肠杆菌中的功能重建。

Functional reconstitution of cellulose synthase in Escherichia coli.

作者信息

Imai Tomoya, Sun Shi-Jing, Horikawa Yoshiki, Wada Masahisa, Sugiyama Junji

机构信息

Research Institute for Sustainable Humanosphere (RISH), Kyoto University , Uji, Kyoto 611-0011, Japan.

出版信息

Biomacromolecules. 2014 Nov 10;15(11):4206-13. doi: 10.1021/bm501217g. Epub 2014 Oct 22.

Abstract

Cellulose is a high molecular weight polysaccharide of β1 → 4-d-glucan widely distributed in nature-from plant cell walls to extracellular polysaccharide in bacteria. Cellulose synthase, together with other auxiliary subunit(s) in the cell membrane, facilitates the fibrillar assembly of cellulose polymer chains into a microfibril. The gene encoding the catalytic subunit of cellulose synthase is cesA and has been identified in many cellulose-producing organisms. Very few studies, however, have shown that recombinant CesA protein synthesizes cellulose polymer, but the mechanism by which CesA protein synthesizes cellulose microfibrils is not known. Here we show that cellulose-synthesizing activity is successfully reconstituted in Escherichia coli by expressing the bacterial cellulose synthase complex of Gluconacetobacter xylinus: CesA and CesB (formerly BcsA and BcsB, respectively). Cellulose synthase activity was, however, only detected when CesA and CesB were coexpressed with diguanyl cyclase (DGC), which synthesizes cyclic-di-GMP (c-di-GMP), which in turn activates cellulose-synthesizing activity in bacteria. Direct observation by electron microscopy revealed extremely thin fibrillar structures outside E. coli cells, which were removed by cellulase treatment. This fiber structure is not likely to be the native crystallographic form of cellulose I, given that it was converted to cellulose II by a chemical treatment milder than ever described. We thus putatively conclude that this fine fiber is an unprecedented structure of cellulose. Despite the inability of the recombinant enzyme to synthesize the native structure of cellulose, the system described in this study, named "CESEC (CEllulose-Synthesizing E. Coli)", represents a useful tool for functional analyses of cellulose synthase and for seeding new nanomaterials.

摘要

纤维素是一种β1→4 - D -葡聚糖的高分子量多糖,广泛存在于自然界中,从植物细胞壁到细菌的胞外多糖。纤维素合酶与细胞膜中的其他辅助亚基一起,促进纤维素聚合物链组装成微纤丝。编码纤维素合酶催化亚基的基因是cesA,已在许多产生纤维素的生物体中得到鉴定。然而,很少有研究表明重组CesA蛋白能合成纤维素聚合物,而且CesA蛋白合成纤维素微纤丝的机制尚不清楚。在这里,我们表明通过表达木醋杆菌的细菌纤维素合酶复合物:CesA和CesB(以前分别为BcsA和BcsB),在大肠杆菌中成功重建了纤维素合成活性。然而,只有当CesA和CesB与合成环二鸟苷酸(c - di - GMP)的二鸟苷酸环化酶(DGC)共表达时,才能检测到纤维素合酶活性,而c - di - GMP又能激活细菌中的纤维素合成活性。电子显微镜直接观察发现大肠杆菌细胞外有极细的纤维状结构,这些结构可被纤维素酶处理去除。鉴于这种纤维结构通过比以往描述的更温和的化学处理转化为纤维素II,它不太可能是纤维素I的天然晶体形式。因此,我们推测这种细纤维是一种前所未有的纤维素结构。尽管重组酶无法合成纤维素的天然结构,但本研究中描述的系统,名为“CESEC(纤维素合成大肠杆菌)”,是纤维素合酶功能分析和新型纳米材料种子培养的有用工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验