Meierhofer David, Weidner Christopher, Sauer Sascha
Max Planck Institute for Molecular Genetics , Ihnestraße 63-73, 14195 Berlin, Germany.
J Proteome Res. 2014 Dec 5;13(12):5592-602. doi: 10.1021/pr5005828. Epub 2014 Oct 28.
The incidences of obesity and type 2 diabetes are rapidly increasing and have evolved into a global epidemic. In this study, we analyzed the molecular effects of high-fat diet (HFD)-induced insulin-resistance on mice in two metabolic target tissues, the white adipose tissue (WAT) and the liver. Additionally, we analyzed the effects of drug treatment using the specific PPARγ ligand rosiglitazone. We integrated transcriptome, proteome, and metabolome data sets for a combined holistic view of molecular mechanisms in type 2 diabetes. Using network and pathway analyses, we identified hub proteins such as SDHB and SUCLG1 in WAT and deregulation of major metabolic pathways in the insulin-resistant state, including the TCA cycle, oxidative phosphorylation, and branched chain amino acid metabolism. Rosiglitazone treatment resulted mainly in modulation via PPAR signaling and oxidative phosphorylation in WAT only. Interestingly, in HFD liver, we could observe a decrease of proteins involved in vitamin B metabolism such as PDXDC1 and DHFR and the according metabolites. Furthermore, we could identify sphingosine (Sph) and sphingosine 1-phosphate (SP1) as a drug-specific marker pair in the liver. In summary, our data indicate physiological plasticity gained by interconnected molecular pathways to counteract metabolic dysregulation due to high calorie intake and drug treatment.
肥胖症和2型糖尿病的发病率正在迅速上升,并已演变成一种全球流行病。在本研究中,我们分析了高脂饮食(HFD)诱导的胰岛素抵抗对小鼠白色脂肪组织(WAT)和肝脏这两个代谢靶组织的分子影响。此外,我们分析了使用特异性PPARγ配体罗格列酮进行药物治疗的效果。我们整合了转录组、蛋白质组和代谢组数据集,以全面了解2型糖尿病的分子机制。通过网络和通路分析,我们在WAT中鉴定出了诸如SDHB和SUCLG1等枢纽蛋白,以及胰岛素抵抗状态下主要代谢通路的失调,包括三羧酸循环、氧化磷酸化和支链氨基酸代谢。罗格列酮治疗主要仅通过WAT中的PPAR信号传导和氧化磷酸化发挥调节作用。有趣的是,在HFD诱导的肝脏中,我们观察到参与维生素B代谢的蛋白质如PDXDC1和DHFR以及相应代谢物的减少。此外,我们可以将鞘氨醇(Sph)和1-磷酸鞘氨醇(SP1)鉴定为肝脏中的药物特异性标志物对。总之,我们的数据表明,相互关联的分子通路获得了生理可塑性,以抵消高热量摄入和药物治疗导致的代谢失调。