Murphy Grant S, Sathyamoorthy Bharatwaj, Der Bryan S, Machius Mischa C, Pulavarti Surya V, Szyperski Thomas, Kuhlman Brian
Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599-3290.
Protein Sci. 2015 Apr;24(4):434-45. doi: 10.1002/pro.2577. Epub 2014 Nov 6.
The de novo design of proteins is a rigorous test of our understanding of the key determinants of protein structure. The helix bundle is an interesting de novo design model system due to the diverse topologies that can be generated from a few simple α-helices. Previously, noncomputational studies demonstrated that connecting amphipathic helices together with short loops can sometimes generate helix bundle proteins, regardless of the bundle's exact sequence. However, using such methods, the precise positions of helices and side chains cannot be predetermined. Since protein function depends on exact positioning of residues, we examined if sequence design tools in the program Rosetta could be used to design a four-helix bundle with a predetermined structure. Helix position was specified using a folding procedure that constrained the design model to a defined topology, and iterative rounds of rotamer-based sequence design and backbone refinement were used to identify a low energy sequence for characterization. The designed protein, DND_4HB, unfolds cooperatively (Tm >90°C) and a NMR solution structure shows that it adopts the target helical bundle topology. Helices 2, 3, and 4 agree very closely with the design model (backbone RMSD = 1.11 Å) and >90% of the core side chain χ1 and χ2 angles are correctly predicted. Helix 1 lies in the target groove against the other helices, but is displaced 3 Å along the bundle axis. This result highlights the potential of computational design to create bundles with atomic-level precision, but also points at remaining challenges for achieving specific positioning between amphipathic helices.
蛋白质的从头设计是对我们对蛋白质结构关键决定因素理解的严格考验。由于可以从几个简单的α螺旋产生多种拓扑结构,螺旋束是一个有趣的从头设计模型系统。以前的非计算研究表明,将两亲性螺旋与短环连接在一起有时可以产生螺旋束蛋白,而不管束的确切序列如何。然而,使用这些方法,螺旋和侧链的精确位置无法预先确定。由于蛋白质功能取决于残基的精确位置,我们研究了Rosetta程序中的序列设计工具是否可用于设计具有预定结构的四螺旋束。使用将设计模型限制为定义拓扑的折叠程序指定螺旋位置,并使用基于旋转异构体的序列设计和主链优化的迭代轮次来识别用于表征的低能量序列。设计的蛋白质DND_4HB协同展开(Tm>90°C),NMR溶液结构表明它采用目标螺旋束拓扑结构。螺旋2、3和4与设计模型非常接近(主链RMSD = 1.11 Å),并且>90%的核心侧链χ1和χ2角度被正确预测。螺旋1位于与其他螺旋相对的目标凹槽中,但沿束轴位移了3 Å。这一结果突出了计算设计在创建具有原子级精度的束方面的潜力,但也指出了在实现两亲性螺旋之间特定定位方面仍然存在的挑战。