Suppr超能文献

如何设计肽。

How to Design Peptides.

机构信息

Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA.

Department of Biology, New Jersey Institute of Technology, Newark, NJ, USA.

出版信息

Methods Mol Biol. 2023;2597:187-216. doi: 10.1007/978-1-0716-2835-5_15.

Abstract

Novel design of proteins to target receptors for treatment or tissue augmentation has come to the fore owing to advancements in computing power, modeling frameworks, and translational successes. Shorter proteins, or peptides, can offer combinatorial synergies with dendrimer, polymer, or other peptide carriers for enhanced local signaling, which larger proteins may sterically hinder. Here, we present a generalized method for designing a novel peptide. We first show how to create a script protocol that can be used to iteratively optimize and screen novel peptide sequences for binding a target protein. We present a step-by-step introduction to utilizing file repositories, data bases, and the Rosetta software suite. RosettaScripts, an .xml interface that allows for sequential functions to be performed, is used to order the functions for repeatable performance. These strategies may lead to more groups venturing into computational design, which may result in synergies from artificial intelligence/machine learning (AI/ML) to phage display and screening. Importantly, the beginner is expected to be able to design their first peptide ligand and begin their journey in peptide drug discovery. Generally, these peptides potentially could be used to interact with any enzyme or receptor, for example, in the study of chemokines and their interactions with glycosoaminoglycans and their receptors.

摘要

由于计算能力、建模框架和转化成功的进步,针对受体的新型蛋白质设计已成为治疗或组织增强的主要方法。较短的蛋白质或肽可以与树状聚合物、聚合物或其他肽载体产生组合协同作用,以增强局部信号传导,而较大的蛋白质可能会在空间上阻碍其作用。在这里,我们提出了一种设计新型肽的通用方法。我们首先展示如何创建一个脚本协议,该协议可用于迭代优化和筛选与靶蛋白结合的新型肽序列。我们逐步介绍了如何利用文件存储库、数据库和 Rosetta 软件套件。RosettaScripts 是一种.xml 接口,允许执行顺序功能,用于按可重复的顺序排列功能。这些策略可能会促使更多的人涉足计算设计,这可能会带来人工智能/机器学习 (AI/ML) 与噬菌体展示和筛选的协同作用。重要的是,初学者应该能够设计他们的第一个肽配体,并开始他们在肽药物发现的旅程。通常,这些肽有可能与任何酶或受体相互作用,例如,在趋化因子及其与糖胺聚糖及其受体相互作用的研究中。

相似文献

1
How to Design Peptides.
Methods Mol Biol. 2023;2597:187-216. doi: 10.1007/978-1-0716-2835-5_15.
2
RosettaScripts: a scripting language interface to the Rosetta macromolecular modeling suite.
PLoS One. 2011;6(6):e20161. doi: 10.1371/journal.pone.0020161. Epub 2011 Jun 24.
4
Incorporation of noncanonical amino acids into Rosetta and use in computational protein-peptide interface design.
PLoS One. 2012;7(3):e32637. doi: 10.1371/journal.pone.0032637. Epub 2012 Mar 14.
6
Predicting the tolerated sequences for proteins and protein interfaces using RosettaBackrub flexible backbone design.
PLoS One. 2011;6(7):e20451. doi: 10.1371/journal.pone.0020451. Epub 2011 Jul 18.
7
Current strategies to address data scarcity in artificial intelligence-based drug discovery: A comprehensive review.
Comput Biol Med. 2024 Sep;179:108734. doi: 10.1016/j.compbiomed.2024.108734. Epub 2024 Jul 3.
8
How can artificial intelligence be used for peptidomics?
Expert Rev Proteomics. 2021 Jul;18(7):527-556. doi: 10.1080/14789450.2021.1962303. Epub 2021 Aug 23.
9
Artificial intelligence to deep learning: machine intelligence approach for drug discovery.
Mol Divers. 2021 Aug;25(3):1315-1360. doi: 10.1007/s11030-021-10217-3. Epub 2021 Apr 12.
10
Modeling beta-sheet peptide-protein interactions: Rosetta FlexPepDock in CAPRI rounds 38-45.
Proteins. 2020 Aug;88(8):1037-1049. doi: 10.1002/prot.25871. Epub 2020 Jan 6.

引用本文的文献

1
CYCLICCAE: A CONFORMATIONAL AUTOENCODER FOR EFFICIENT HETEROCHIRAL MACROCYCLIC BACKBONE SAMPLING.
bioRxiv. 2025 Feb 27:2025.02.21.639569. doi: 10.1101/2025.02.21.639569.

本文引用的文献

1
Currently Available Strategies for Target Identification of Bioactive Natural Products.
Front Chem. 2021 Sep 30;9:761609. doi: 10.3389/fchem.2021.761609. eCollection 2021.
2
Query-guided protein-protein interaction inhibitor discovery.
Chem Sci. 2021 Mar 2;12(13):4753-4762. doi: 10.1039/d1sc00023c.
3
4
Genome-Based Drug Target Identification in Human Pathogen .
Front Genet. 2021 Mar 25;12:564056. doi: 10.3389/fgene.2021.564056. eCollection 2021.
5
Computationally designed peptide macrocycle inhibitors of New Delhi metallo-β-lactamase 1.
Proc Natl Acad Sci U S A. 2021 Mar 23;118(12). doi: 10.1073/pnas.2012800118.
7
Computational Ways to Enhance Protein Inhibitor Design.
Front Mol Biosci. 2021 Feb 3;7:607323. doi: 10.3389/fmolb.2020.607323. eCollection 2020.
8
A Global Review on Short Peptides: Frontiers and Perspectives.
Molecules. 2021 Jan 15;26(2):430. doi: 10.3390/molecules26020430.
9
Advances to tackle backbone flexibility in protein docking.
Curr Opin Struct Biol. 2021 Apr;67:178-186. doi: 10.1016/j.sbi.2020.11.011. Epub 2020 Dec 23.
10
Recent advances in the development of protein-protein interactions modulators: mechanisms and clinical trials.
Signal Transduct Target Ther. 2020 Sep 23;5(1):213. doi: 10.1038/s41392-020-00315-3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验