Institute of Biochemistry II, Goethe University, Medical School, Frankfurt, Germany.
Institute of Biochemistry II, Goethe University, Medical School, Frankfurt, Germany
Mol Cell Biol. 2014 Dec;34(24):4474-84. doi: 10.1128/MCB.00801-14. Epub 2014 Oct 6.
Ribosome biogenesis is a multistep cellular pathway that involves more than 200 regulatory components to ultimately generate translation-competent 80S ribosomes. The initial steps of this process, particularly rRNA processing, take place in the nucleolus, while later stages occur in the nucleoplasm and cytoplasm. One critical factor of 28S rRNA maturation is the SUMO-isopeptidase SENP3. SENP3 tightly interacts with the nucleolar scaffold protein NPM1 and is associated with nucleolar 60S preribosomes. A central question is how changes in energy supply feed into the regulation of ribosome maturation. Here, we show that the nutrient-sensing mTOR kinase pathway controls the nucleolar targeting of SENP3 by regulating its interaction with NPM1. We define an N-terminal domain in SENP3 as the critical NPM1 binding region and provide evidence that mTOR-mediated phosphorylation of serine/threonine residues within this region fosters the interaction of SENP3 with NPM1. The inhibition of mTOR triggers the nucleolar release of SENP3, thereby likely compromising its activity in rRNA processing. Since mTOR activity is tightly coupled to nutrient availability, we propose that this pathway contributes to the adaptation of ribosome maturation in response to the cellular energy status.
核糖体生物发生是一个多步骤的细胞途径,涉及 200 多个调节成分,最终生成翻译活性的 80S 核糖体。这个过程的初始步骤,特别是 rRNA 加工,发生在核仁中,而后期阶段发生在核质和细胞质中。28S rRNA 成熟的一个关键因素是 SUMO-异肽酶 SENP3。SENP3 与核仁支架蛋白 NPM1 紧密相互作用,并与核仁 60S 前核糖体相关。一个核心问题是能量供应的变化如何反馈到核糖体成熟的调节中。在这里,我们表明,营养感应 mTOR 激酶途径通过调节其与 NPM1 的相互作用来控制 SENP3 的核仁定位。我们将 SENP3 的 N 端结构域定义为与 NPM1 结合的关键区域,并提供证据表明,该区域内丝氨酸/苏氨酸残基的 mTOR 介导的磷酸化促进了 SENP3 与 NPM1 的相互作用。mTOR 的抑制触发 SENP3 的核仁释放,从而可能损害其在 rRNA 加工中的活性。由于 mTOR 活性与营养物质的可用性紧密相关,我们提出该途径有助于核糖体成熟对细胞能量状态的适应。