Department of Chemical Engineering and ‡Department of Chemistry, Massachusetts Institute of Technology , 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States.
Nano Lett. 2014 Nov 12;14(11):6087-91. doi: 10.1021/nl5019386. Epub 2014 Oct 14.
We report highly efficient nonradiative energy transfer from cadmium selenide (CdSe) quantum dots to monolayer and few-layer molybdenum disulfide (MoS2). The quenching of the donor quantum dot photoluminescence increases as the MoS2 flake thickness decreases with the highest efficiency (>95%) observed for monolayer MoS2. This counterintuitive result arises from reduced dielectric screening in thin layer semiconductors having unusually large permittivity and a strong in-plane transition dipole moment, as found in MoS2. Excitonic energy transfer between a zero-dimensional emitter and a two-dimensional absorber is fundamentally interesting and enables a wide range of applications including broadband optical down-conversion, optical detection, photovoltaic sensitization, and color shifting in light-emitting devices.
我们报告了硒化镉(CdSe)量子点到单层和少层二硫化钼(MoS2)的高效非辐射能量转移。随着 MoS2 薄片厚度的减小,供体量子点光致发光的猝灭增加,在单层 MoS2 中观察到最高效率(>95%)。这一反直觉的结果源于具有异常大介电常数和强面内跃迁偶极矩的薄层半导体中,介电屏蔽的减少,如在 MoS2 中发现的。零维发射器和二维吸收体之间的激子能量转移在理论上很有趣,并且能够实现广泛的应用,包括宽带光下转换、光学检测、光伏敏化和发光器件中的颜色移动。