Perrin B Scott, Sodt Alexander J, Cotten Myriam L, Pastor Richard W
Laboratory of Computational Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
J Membr Biol. 2015 Jun;248(3):455-67. doi: 10.1007/s00232-014-9733-1. Epub 2014 Oct 8.
The initial steps of membrane disruption by antimicrobial peptides (AMPs) involve binding to bacterial membranes in a surface-bound (S) orientation. To evaluate the effects of lipid composition on the S state, molecular dynamics simulations of the AMPs piscidin 1 (p1) and piscidin 3 (p3) were carried out in four different bilayers: 3:1 DMPC/DMPG, 3:1 POPC/POPG, 1:1 POPE/POPG, and 4:1 POPC/cholesterol. In all cases, the addition of 1:40 piscidin caused thinning of the bilayer, though thinning was least for DMPC/DMPG. The peptides also insert most deeply into DMPC/DMPG, spanning the region from the bilayer midplane to the headgroups, and thereby only mildly disrupting the acyl chains. In contrast, the peptides insert less deeply in the palmitoyl-oleoyl containing membranes, do not reach the midplane, and substantially disrupt the chains, i.e., the neighboring acyl chains bend under the peptide, forming a basket-like conformation. Curvature free energy derivatives calculated from the simulation pressure profiles reveal that the peptides generate positive curvature in membranes with palmitoyl and oleoyl chains but negative curvature in those with myristoyl chains. Curvature inductions predicted with a continuum elastic model follow the same trends, though the effect is weaker, and a small negative curvature induction is obtained in POPC/POPG. These results do not directly speak to the relative stability of the inserted (I) states or ease of pore formation, which requires the free energy pathway between the S and I states. Nevertheless, they do highlight the importance of lipid composition and acyl chain packing.
抗菌肽(AMPs)破坏细胞膜的初始步骤包括以表面结合(S)方向与细菌膜结合。为了评估脂质组成对S状态的影响,在四种不同的双层膜中对抗菌肽piscidin 1(p1)和piscidin 3(p3)进行了分子动力学模拟:3:1的二肉豆蔻酰磷脂酰胆碱/二肉豆蔻酰磷脂酰甘油(DMPC/DMPG)、3:1的1-棕榈酰-2-油酰基-sn-甘油-3-磷酸胆碱/1-棕榈酰-2-油酰基-sn-甘油-3-磷酸甘油(POPC/POPG)、1:1的1-棕榈酰-2-油酰基-sn-甘油-3-磷酸乙醇胺/1-棕榈酰-2-油酰基-sn-甘油-3-磷酸甘油(POPE/POPG)以及4:1的1-棕榈酰-2-油酰基-sn-甘油-3-磷酸胆碱/胆固醇。在所有情况下,添加1:40的piscidin都会导致双层膜变薄,不过对于DMPC/DMPG来说变薄程度最小。这些肽在DMPC/DMPG中插入最深,跨越从双层膜中间平面到头部基团的区域,因此仅轻微破坏酰基链。相比之下,这些肽在含有棕榈酰-油酰基的膜中插入较浅,未到达中间平面,并且显著破坏链,即相邻的酰基链在肽下方弯曲,形成篮状构象。根据模拟压力分布计算的曲率自由能导数表明,这些肽在含有棕榈酰和油酰基链的膜中产生正曲率,但在含有肉豆蔻酰链的膜中产生负曲率。用连续弹性模型预测的曲率诱导遵循相同趋势,尽管效果较弱,并且在POPC/POPG中获得了小的负曲率诱导。这些结果没有直接说明插入(I)状态的相对稳定性或形成孔的难易程度,这需要S和I状态之间的自由能途径。然而,它们确实突出了脂质组成和酰基链堆积的重要性。