Seyedsayamdost Mohammad R, Wang Rurun, Kolter Roberto, Clardy Jon
Department of Chemistry, Princeton University , Princeton, New Jersey 08544, United States.
J Am Chem Soc. 2014 Oct 29;136(43):15150-3. doi: 10.1021/ja508782y. Epub 2014 Oct 21.
Roseobacticides regulate the symbiotic relationship between a marine bacterium (Phaeobacter inhibens) and a marine microalga (Emiliania huxleyi). This relationship can be mutualistic, when the algal host provides food for the bacteria and the bacteria produce growth hormones and antibiotics for the algae, or parasitic, when the algae senesce and release p-coumaric acid. The released p-coumaric acid causes the bacteria to synthesize roseobacticides, which are nM-μM toxins for the algae. We examined the biosynthesis of roseobacticides and report that all roseobacticide precursors play critical roles during the mutualist phase of the symbiosis. Roseobacticides are biosynthesized from the algal growth promoter, the major food molecule provided by the algal cells, and the algal senescence signal that initiates the mutualist-to-parasite switch. Thus, molecules that are beneficial during mutualism are diverted to the synthesis of toxins during parasitism. A plausible mechanism for assembling roseobacticides from these molecules is proposed.
玫瑰杆菌素调节一种海洋细菌(抑制性费氏杆菌)与一种海洋微藻(赫氏颗石藻)之间的共生关系。当藻类宿主为细菌提供食物且细菌为藻类产生生长激素和抗生素时,这种关系可以是互利共生的;而当藻类衰老并释放对香豆酸时,这种关系则是寄生的。释放出的对香豆酸会使细菌合成玫瑰杆菌素,玫瑰杆菌素对藻类来说是纳摩尔至微摩尔级别的毒素。我们研究了玫瑰杆菌素的生物合成,并报告称所有玫瑰杆菌素前体在共生的互利共生阶段都发挥着关键作用。玫瑰杆菌素由藻类生长促进剂、藻类细胞提供的主要食物分子以及启动互利共生向寄生转变的藻类衰老信号生物合成。因此,在互利共生期间有益的分子在寄生期间会转而用于毒素的合成。本文提出了一种从这些分子组装玫瑰杆菌素的合理机制。