Wang Rurun, Gallant Étienne, Seyedsayamdost Mohammad R
Department of Chemistry, Princeton University, Princeton, New Jersey, USA.
Department of Chemistry, Princeton University, Princeton, New Jersey, USA Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
mBio. 2016 Mar 22;7(2):e02118. doi: 10.1128/mBio.02118-15.
Roseobacterclade bacteria are abundant in surface waters and are among the most metabolically diverse and ecologically significant species. This group includes opportunistic symbionts that associate with micro- and macroalgae. We have proposed that one representative member,Phaeobacter inhibens, engages in a dynamic symbiosis with the microalgaEmiliania huxleyi In one phase, mutualistically beneficial molecules are exchanged, including theRoseobacter-produced antibiotic tropodithietic acid (TDA), which is thought to protect the symbiotic interaction. In an alternative parasitic phase, triggered by algal senescence, the bacteria produce potent algaecides, the roseobacticides, which kill the algal host. Here, we employed genetic and biochemical screens to identify the roseobacticide biosynthetic gene cluster. By using a transposon mutagenesis approach, we found that genes required for TDA synthesis-thetdaoperon andpaacatabolon-are also necessary for roseobacticide production. Thus, in contrast to the one-cluster-one-compound paradigm, thetdagene cluster can generate two sets of molecules with distinct structures and bioactivities. We further show that roseobacticide production is quorum sensing regulated via anN-acyl homoserine lactone signal (3-OH-C10-HSL). To ensure tight regulation of algaecide production, and thus of a lifestyle switch from mutualism to parasitism, roseobacticide biosynthesis necessitates the presence of both an algal senescence molecule and a quorum sensing signal.IMPORTANCEMarineRoseobacterspecies are abundant in the oceans and engage in symbiotic interactions with microscopic algae. One member,P. inhibens, produces the antibiotic TDA and a growth hormone thought to protect and promote algal growth. However, in the presence of molecules released by senescing algae, the bacteria produce potent algaecides, the roseobacticides, which kill the host. We examined the regulatory networks and biosynthetic genes required for roseobacticide production. We found thatP. inhibensuses largely the same set of genes for production of both TDA and roseobacticides, thus providing a rare case in which one gene cluster synthesizes two structurally and functionally distinct molecules. Moreover, we found roseobacticide production to be regulated by quorum sensing. Thus, two small molecules, the algal metabolite and the quorum-sensing signal, ensure tight control in the production of roseobacticides. These results highlight the role of small molecules in regulating microbial symbioses.
玫瑰杆菌属细菌在地表水层中数量丰富,是代谢多样性最高且生态意义最为显著的物种之一。该菌群包括与微藻和大型藻类共生的机会性共生体。我们曾提出,一个具有代表性的成员,即抑制性噬藻杆菌(Phaeobacter inhibens),与微小原甲藻(Emiliania huxleyi)存在动态共生关系。在一个阶段,双方会交换互利分子,包括玫瑰杆菌属细菌产生的抗生素2,4,6-三甲基-3,5-二硫代己酸(TDA),据信它能保护这种共生关系。在另一个由藻类衰老引发的寄生阶段,细菌会产生强效杀藻剂——玫瑰杀藻素,从而杀死藻类宿主。在此,我们运用遗传和生化筛选方法来鉴定玫瑰杀藻素的生物合成基因簇。通过转座子诱变方法,我们发现TDA合成所需的基因——tda操纵子和paa分解代谢操纵子——对于玫瑰杀藻素的产生也是必需的。因此,与“一个基因簇产生一种化合物”的范例不同,tda基因簇能够产生两组结构和生物活性各异的分子。我们进一步表明,玫瑰杀藻素的产生是通过N-酰基高丝氨酸内酯信号(3-羟基-C10-HSL)进行群体感应调控的。为确保对杀藻剂产生的严格调控,进而确保从共生到寄生的生活方式转变,玫瑰杀藻素的生物合成需要同时存在藻类衰老分子和群体感应信号。
海洋玫瑰杆菌属物种在海洋中数量众多,并与微小藻类存在共生关系。其中一个成员,抑制性噬藻杆菌,会产生抗生素TDA和一种被认为能保护并促进藻类生长的生长激素。然而,在衰老藻类释放的分子存在的情况下,细菌会产生强效杀藻剂——玫瑰杀藻素,从而杀死宿主。我们研究了玫瑰杀藻素产生所需的调控网络和生物合成基因。我们发现,抑制性噬藻杆菌在很大程度上利用同一组基因来产生TDA和玫瑰杀藻素,从而提供了一个罕见的案例,即一个基因簇合成两种结构和功能不同的分子。此外,我们发现玫瑰杀藻素的产生受群体感应调控。因此,两种小分子,即藻类代谢物和群体感应信号,确保了对玫瑰杀藻素产生的严格控制。这些结果突出了小分子在调节微生物共生关系中的作用。