Suppr超能文献

光谱扩散:一种用于光谱CT数据稳健物质分解的算法。

Spectral diffusion: an algorithm for robust material decomposition of spectral CT data.

作者信息

Clark Darin P, Badea Cristian T

机构信息

Center for In Vivo Microscopy, Box 3302, Duke University Medical Center, Durham, NC 27710, USA.

出版信息

Phys Med Biol. 2014 Nov 7;59(21):6445-66. doi: 10.1088/0031-9155/59/21/6445. Epub 2014 Oct 8.

Abstract

Clinical successes with dual energy CT, aggressive development of energy discriminating x-ray detectors, and novel, target-specific, nanoparticle contrast agents promise to establish spectral CT as a powerful functional imaging modality. Common to all of these applications is the need for a material decomposition algorithm which is robust in the presence of noise. Here, we develop such an algorithm which uses spectrally joint, piecewise constant kernel regression and the split Bregman method to iteratively solve for a material decomposition which is gradient sparse, quantitatively accurate, and minimally biased. We call this algorithm spectral diffusion because it integrates structural information from multiple spectral channels and their corresponding material decompositions within the framework of diffusion-like denoising algorithms (e.g. anisotropic diffusion, total variation, bilateral filtration). Using a 3D, digital bar phantom and a material sensitivity matrix calibrated for use with a polychromatic x-ray source, we quantify the limits of detectability (CNR = 5) afforded by spectral diffusion in the triple-energy material decomposition of iodine (3.1 mg mL(-1)), gold (0.9 mg mL(-1)), and gadolinium (2.9 mg mL(-1)) concentrations. We then apply spectral diffusion to the in vivo separation of these three materials in the mouse kidneys, liver, and spleen.

摘要

双能CT的临床成功、能量分辨X射线探测器的积极研发以及新型、靶向特异性纳米颗粒造影剂有望使光谱CT成为一种强大的功能成像方式。所有这些应用的共同之处在于需要一种在存在噪声的情况下稳健的物质分解算法。在此,我们开发了这样一种算法,它使用光谱联合、分段常数核回归和分裂Bregman方法来迭代求解一种物质分解,该分解具有梯度稀疏、定量准确且偏差最小的特点。我们将此算法称为光谱扩散,因为它在类似扩散的去噪算法(例如各向异性扩散、总变差、双边滤波)框架内整合了来自多个光谱通道及其相应物质分解的结构信息。使用一个3D数字条形模型和一个针对多色X射线源校准的物质灵敏度矩阵,我们量化了光谱扩散在碘(3.1 mg mL(-1))、金(0.9 mg mL(-1))和钆(2.9 mg mL(-1))浓度的三能物质分解中提供的可检测性极限(CNR = 5)。然后我们将光谱扩散应用于在小鼠肾脏、肝脏和脾脏中对这三种物质进行体内分离。

相似文献

引用本文的文献

7
Spectral Photon Counting CT: Imaging Algorithms and Performance Assessment.光谱光子计数CT:成像算法与性能评估
IEEE Trans Radiat Plasma Med Sci. 2021 Jul;5(4):453-464. doi: 10.1109/trpms.2020.3007380. Epub 2020 Jul 7.
8
Image-domain Material Decomposition for Spectral CT using a Generalized Dictionary Learning.使用广义字典学习的光谱CT图像域材料分解
IEEE Trans Radiat Plasma Med Sci. 2021 Jul;5(4):537-547. doi: 10.1109/trpms.2020.2997880. Epub 2020 May 26.
9
Deep-learning-based direct inversion for material decomposition.基于深度学习的材料分解直接反演
Med Phys. 2020 Dec;47(12):6294-6309. doi: 10.1002/mp.14523. Epub 2020 Oct 30.
10
Nanoparticle contrast agents for X-ray imaging applications.用于 X 射线成像应用的纳米颗粒造影剂。
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2020 Nov;12(6):e1642. doi: 10.1002/wnan.1642. Epub 2020 May 22.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验