Clark Darin P, Badea Cristian T
Center for In Vivo Microscopy, Box 3302, Duke University Medical Center, Durham, NC 27710, USA.
Phys Med Biol. 2014 Nov 7;59(21):6445-66. doi: 10.1088/0031-9155/59/21/6445. Epub 2014 Oct 8.
Clinical successes with dual energy CT, aggressive development of energy discriminating x-ray detectors, and novel, target-specific, nanoparticle contrast agents promise to establish spectral CT as a powerful functional imaging modality. Common to all of these applications is the need for a material decomposition algorithm which is robust in the presence of noise. Here, we develop such an algorithm which uses spectrally joint, piecewise constant kernel regression and the split Bregman method to iteratively solve for a material decomposition which is gradient sparse, quantitatively accurate, and minimally biased. We call this algorithm spectral diffusion because it integrates structural information from multiple spectral channels and their corresponding material decompositions within the framework of diffusion-like denoising algorithms (e.g. anisotropic diffusion, total variation, bilateral filtration). Using a 3D, digital bar phantom and a material sensitivity matrix calibrated for use with a polychromatic x-ray source, we quantify the limits of detectability (CNR = 5) afforded by spectral diffusion in the triple-energy material decomposition of iodine (3.1 mg mL(-1)), gold (0.9 mg mL(-1)), and gadolinium (2.9 mg mL(-1)) concentrations. We then apply spectral diffusion to the in vivo separation of these three materials in the mouse kidneys, liver, and spleen.
双能CT的临床成功、能量分辨X射线探测器的积极研发以及新型、靶向特异性纳米颗粒造影剂有望使光谱CT成为一种强大的功能成像方式。所有这些应用的共同之处在于需要一种在存在噪声的情况下稳健的物质分解算法。在此,我们开发了这样一种算法,它使用光谱联合、分段常数核回归和分裂Bregman方法来迭代求解一种物质分解,该分解具有梯度稀疏、定量准确且偏差最小的特点。我们将此算法称为光谱扩散,因为它在类似扩散的去噪算法(例如各向异性扩散、总变差、双边滤波)框架内整合了来自多个光谱通道及其相应物质分解的结构信息。使用一个3D数字条形模型和一个针对多色X射线源校准的物质灵敏度矩阵,我们量化了光谱扩散在碘(3.1 mg mL(-1))、金(0.9 mg mL(-1))和钆(2.9 mg mL(-1))浓度的三能物质分解中提供的可检测性极限(CNR = 5)。然后我们将光谱扩散应用于在小鼠肾脏、肝脏和脾脏中对这三种物质进行体内分离。