Suppr超能文献

图像形成因素对光谱CT中材料鉴别能力的影响。

Impact of image formation factors on material discrimination in spectral CT.

作者信息

Rajagopal Jayasai, Zarei Mojtaba, Vrbaski Stevan, Pritchard William F, Abadi Ehsan, Jones Elizabeth C, Samei Ehsan

机构信息

Carl E. Ravin Advanced Imaging Laboratories and Center for Virtual Imaging Trials, Department of Radiology, Duke University Medical Center, Durham, NC 27705, United States of America.

Medical Physics Graduate Program, Duke University Medical Center, Durham, NC 27705, United States of America.

出版信息

Phys Med Biol. 2024 Dec 24;70(1). doi: 10.1088/1361-6560/ad9daf.

Abstract

The accuracy of material decomposition in spectral computed tomography (CT) depends on the information quality captured in image acquisition, a factor that cannot be adequately assessed using conventional image quality metrologies due to the multi-energy nature of spectral CT. This work used metrologies specific to spectral CT to evaluate the impact of acquisition conditions on the quality of spectral CT images and accuracy of material decomposition techniques.Computational phantoms were created with cylindrical shapes and variable sizes (20-40 cm), containing inserts of iodine and gadolinium (1-8 mg ml). The phantoms were imaged using a validated CT simulator modeling a clinical photon-counting CT scanner. The acquisitions were done at different detector energy thresholds (50-90 keV) and tube currents (25-250 mAs). The images were used to develop and train a data-driven material identification and quantification algorithm. Two spectral metrologies, multivariate contrast-to-noise ratio (CNR) and separability index, were used to characterize the impact of energy threshold, tube current, phantom size, and material concentration on signal quality. The results were interpreted in terms of figures of merit of accuracy for classification and mean absolute error (MAE) and root mean squared error (RMSE) for regression.. Signal quality for iodine and gadolinium was maximized with a low energy threshold, high tube current, and small phantom size. While conventional CNR terms predicted variable image quality for two-thirds of all conditions, multivariate CNR was above 10 for half of those. Separability index showed that for a phantom size greater than 30 cm, a minimum of 75-110 mAs is required to separate 2 mg mlof iodine and gadolinium. For both classification and regression tasks, a random forest model with a local statistics dataset provided the best performance. Across conditions, classification performance was 0.66-0.99 for I accuracy, 0.72-0.99 for Gd accuracy. Regression performance was 0.02-0.91 mg mlI and 0.02-0.59 mg mlGd for MAE and 0.11-1.08 mg mlI and 0.07-0.76 mg mlGd for RMSE.Multivariate CNR and separability index metrologies can predict material decomposition performance. Theses metrics demonstrated that the decomposition of iodine and gadolinium have higher separability when the acquisition is done at a lower energy threshold, with a higher tube current, and when the imaged object has a smaller size. Object size had the largest impact on metrics and decomposition performance.

摘要

光谱计算机断层扫描(CT)中物质分解的准确性取决于图像采集过程中捕获的信息质量,由于光谱CT的多能量特性,使用传统图像质量计量方法无法充分评估这一因素。这项工作使用了光谱CT特有的计量方法来评估采集条件对光谱CT图像质量和物质分解技术准确性的影响。创建了具有圆柱形形状和可变尺寸(20 - 40厘米)的计算体模,其中包含碘和钆的插入物(1 - 8毫克/毫升)。使用经过验证的CT模拟器对临床光子计数CT扫描仪进行建模,对体模进行成像。采集在不同的探测器能量阈值(50 - 90 keV)和管电流(25 - 250 mAs)下进行。这些图像用于开发和训练数据驱动的物质识别和量化算法。使用两种光谱计量方法,多变量对比噪声比(CNR)和可分离性指数,来表征能量阈值、管电流、体模尺寸和物质浓度对信号质量的影响。结果根据分类准确性的品质因数以及回归的平均绝对误差(MAE)和均方根误差(RMSE)进行解释。碘和钆的信号质量在低能量阈值、高管电流和小体模尺寸下达到最大化。虽然传统的CNR术语预测了三分之二条件下的可变图像质量,但多变量CNR在其中一半条件下高于10。可分离性指数表明,对于大于30厘米的体模尺寸,要分离2毫克/毫升的碘和钆,至少需要75 - 110 mAs。对于分类和回归任务,具有局部统计数据集的随机森林模型表现最佳。在各种条件下,碘的分类性能I准确性为0.66 - 0.99,钆的分类性能Gd准确性为0.72 - 0.99。回归性能方面,MAE的碘为0.02 - 0.91毫克/毫升,钆为0.02 - 0.59毫克/毫升;RMSE的碘为0.11 - 1.08毫克/毫升,钆为0.07 - 0.76毫克/毫升。多变量CNR和可分离性指数计量方法可以预测物质分解性能。这些指标表明,当在较低能量阈值、较高管电流下进行采集且成像对象尺寸较小时,碘和钆的分解具有更高的可分离性。对象尺寸对指标和分解性能的影响最大。

相似文献

本文引用的文献

7
Dual-Energy CT Images: Pearls and Pitfalls.双能 CT 图像:要点与陷阱。
Radiographics. 2021 Jan-Feb;41(1):98-119. doi: 10.1148/rg.2021200102.
9
Photon-counting CT review.光子计数 CT 综述。
Phys Med. 2020 Nov;79:126-136. doi: 10.1016/j.ejmp.2020.10.030. Epub 2020 Nov 26.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验