Department of Biological Sciences, University of Massachusetts Lowell, One University Ave, Lowell, MA 01854, United States of America.
Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian and Avedisan School of Medicine, 700 Albany Street, W-408E, Boston, MA 02118, United States of America.
J Mol Cell Cardiol. 2024 Mar;188:30-37. doi: 10.1016/j.yjmcc.2024.01.004. Epub 2024 Jan 22.
The cardiac thin filament proteins troponin and tropomyosin control actomyosin formation and thus cardiac contractility. Calcium binding to troponin changes tropomyosin position along the thin filament, allowing myosin head binding to actin required for heart muscle contraction. The thin filament regulatory proteins are hot spots for genetic mutations causing heart muscle dysfunction. While much of the thin filament structure has been characterized, critical regions of troponin and tropomyosin involved in triggering conformational changes remain unresolved. A poorly resolved region, helix-4 (H) of troponin I, is thought to stabilize tropomyosin in a position on actin that blocks actomyosin interactions at low calcium concentrations during muscle relaxation. We have proposed that contact between glutamate 139 on tropomyosin and positively charged residues on H leads to blocking-state stabilization. In this study, we attempted to disrupt these interactions by replacing E139 with lysine (E139K) to define the importance of this residue in thin filament regulation. Comparison of mutant and wild-type tropomyosin was carried out using in-vitro motility assays, actin co-sedimentation, and molecular dynamics simulations to determine perturbations in troponin-tropomyosin function caused by the tropomyosin mutation. Motility assays revealed that mutant thin filaments moved at higher velocity at low calcium with increased calcium sensitivity demonstrating that tropomyosin residue 139 is vital for proper tropomyosin-mediated inhibition during relaxation. Similarly, molecular dynamic simulations revealed a mutation-induced decrease in interaction energy between tropomyosin-E139K and troponin I (R170 and K174). These results suggest that salt-bridge stabilization of tropomyosin position by troponin IH is essential to prevent actomyosin interactions during cardiac muscle relaxation.
肌钙蛋白和原肌球蛋白等心脏细肌丝蛋白控制肌球蛋白-肌动蛋白的形成,从而调节心肌收缩。钙与肌钙蛋白结合会改变细肌丝上原肌球蛋白的位置,使肌球蛋白头部与肌动蛋白结合,这是心肌收缩所必需的。细肌丝调节蛋白是导致心肌功能障碍的基因突变的热点。虽然细肌丝的大部分结构已经得到了描述,但与触发构象变化相关的肌钙蛋白和原肌球蛋白的关键区域仍未得到解决。肌钙蛋白 I 的螺旋-4(H)是一个解析度较差的区域,它被认为可以稳定原肌球蛋白在肌动蛋白上的位置,从而在肌肉松弛时低钙浓度下阻止肌球蛋白-肌动蛋白相互作用。我们曾提出,原肌球蛋白上的谷氨酸 139 与 H 上的正电荷残基之间的接触导致了阻断状态的稳定。在这项研究中,我们试图通过用赖氨酸(E139K)取代 E139 来破坏这些相互作用,以确定该残基在细肌丝调节中的重要性。通过体外运动分析、肌动蛋白共沉淀和分子动力学模拟比较突变体和野生型原肌球蛋白,以确定原肌球蛋白突变对肌钙蛋白-原肌球蛋白功能的影响。运动分析显示,突变体细肌丝在低钙时以更高的速度运动,钙敏感性增加,表明原肌球蛋白残基 139 对于松弛时原肌球蛋白介导的抑制作用至关重要。类似地,分子动力学模拟显示突变诱导的原肌球蛋白-E139K 与肌钙蛋白 I(R170 和 K174)之间的相互作用能下降。这些结果表明,肌钙蛋白 IH 盐桥稳定原肌球蛋白的位置对于防止心肌松弛时肌球蛋白-肌动蛋白的相互作用至关重要。